
Comparing MAC Layer Implementations
using Contiki-OS

Shantanoo Desai
prepared for:

Prof. Dr. Anna Förster

Sustainable Communication Networks
University of Bremen

November 20, 2015

1



Outline

Parameters under Observation

Required Firmware

Steps for Configuration
Simulation for ContikiMAC
Results for ContikiMAC Simulation
Simulation for CXMAC
Results for CX-MAC Simulation

Result

2



Contents of this section

Parameters under Observation

3



Parameters Under Observation

• Packet Reception Rate (PRR):Percent of received packets
in an interval

• related to throughput
• if PRR is low, Packets dropped High
• if PRR is low, overall throughput is low

• Average Duty-Cycle of sensor node
• pertaining to Power Consumption of nodes
• Lower the duty cycle less power consumed and longer

lifetime of node
• energy savings high when node is sleeping

4



Contents of this section

Required Firmware

5



Required Firmware

We use the example mentioned in the following folder:
examples/ipv6/rpl-udp
The folder contains:

• udp-server.c: A UDP server with RPL1 abilities with IPv6
addressing

• udp-client.c: A UDP client with RPL abilities with IPv6
addressing

• rpl-udp-powertrace.csc: Cooja simulator file for
powertracing feature

• rpl-udp.csc: Cooja simulator file to understand RPL based
routing of UDP packets in network

1Routing Protocol over Low-power Lossy Networks

6



Contents of this section

Steps for Configuration
Simulation for ContikiMAC
Results for ContikiMAC Simulation
Simulation for CXMAC
Results for CX-MAC Simulation

7



Steps

• For easy access of MAC and RDC (Radio Duty Cycling)
layer, we make use of a project-conf.h file

• use the following (in the ipv6/rpl-udp folder):
$ gedit project-conf.h

Add the following configuration
• Channel Check Rate: 8 Hz
• MAC Layer: CSMA
• RDC Layer: ContikiMAC

#define NETSTACK_CONF_CHANNEL_CHECK_RATE 8

#define NETSTACK_CONF_MAC csma_driver

#define NETSTACK_CONF_RDC contikimac_driver

8



Steps

Do not forget to add the project-conf.h to the Makefile by
adding this:

CFLAGS += -DPROJECT_CONF_H=\"project-conf.h\"

Previously mentioned configuration is default even if there is
no project-conf.h mentioned in your work.
We use the available rpl-udp-powertrace.csc file for
simulation.

• To make the Simulator run do the following the available
.csc file:
make TARGET=cooja rpl-udp-powertrace.csc

Or you can create your own simulation for e.g. One UDP Sink
and 10 UDP clients

9



Cooja Simulator view

10



Simulation for ContikiMAC

Before starting the simulation:
• click on View in Network window and choose Radio

Traffic and Mote Type options
• on the Toolbar, click on Mote Radio Duty Cycle and adjust

the window to view all the motes
• Start the simulation and keep it on for 5 minutes

(NOTE: don’t rely on the time in the Simulator, use your
Watch)

• Check on Mote Output window and observe the starting
commands (scroll all the way to the top to see what the
nodes are configured to)
it should the same as your project-conf.h file

• Observe the values collected in the Radio duty cycle and
save if for comparison (use Screenshot tool in the
Applications)

11



Mote Output for ContikiMAC Simulation

observe that all the motes are configured to:
• CSMA
• ContikiMAC
• Channel Check Rate 8 Hz
• Radio Channel number is 26

12



Network Topology for Simulation

13



Results for ContikiMAC

14



changing to CX-MAC

• before changing the RDC layer, close the current
simulation and Cooja.

• do the following changes (via terminal):
#define NETSTACK_CONF_RDC cxmac_driver

and compile the program once again
make TARGET=cooja rpl-udp-powertrace.csc

• follow the same step as previously mentioned and run the
simulation

15



Mote Output for CXMAC

Observe that all the motes are configured as:
• CSMA
• CX-MAC
• Channel Check Rate 8 Hz
• Radio Channel number is 26

16



To View the Nodes IEEE 802.15.4 Radio interface

• in the Network window, right-click on any Mote
• in the drop down menu go to More Tools for Sky ..
• click on Mote Interface Viewer
• in the window click on drop down menu on the top right

corner
• select IEEE 802.15.4 Radio

This window will show you what the selected mote is doing
(Listening or Idle) and signal strength
In the end compare the Average values from the Radio Duty
Cycle window for both CX-MAC and ContikiMAC.

17



Simulation for CX-MAC

18



Contents of this section

Result

19



Changes and Result

• change the data transmission interval to 1 or any value in
seconds in udp-client.c in the following section:
#ifndef
#define PERIOD 1
#endif

this will affect the PRR values and duty cycle values
accordingly

• test a self created MAC protocol versus an already defined
MAC layer (CXMAC or ContikiMAC)

RESULT: ContikiMAC is has better performance than the
CX-MAC in terms of PRR and is more energy efficient for
nodes (9 percent v/s 20 percent respectively).
The SINK node remains on for almost close to 100 percent
since it keeps receiving packets from Clients.

20


	Parameters under Observation
	Required Firmware
	Steps for Configuration
	Simulation for ContikiMAC
	Results for ContikiMAC Simulation
	Simulation for CXMAC
	Results for CX-MAC Simulation

	Result

