Basics of Contiki-OS and using it for Wireless Sensor Network Applications

Shantanoo Desai prepared for: Prof. Dr. Anna Förster

Sustainable Communication Networks
University of Bremen

20th November 2015

Outline

CONTIKI-OS

Contiki in a nutshell

Requirements

Getting Started

Initial Steps

File Structure in Contiki

Terminal Basics

First Program in Contiki: Hello-World

Programming using Terminal

Hello-World files

Getting Output

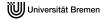
Understanding codes in Contiki

Programming a Sensor Node

TelosB Sensor Node

Connecting the TelosB to Contiki-OS

Hello-World program on TelosB


Cooja Simulator in Contiki-OS

Hello-World Simulation with Cooja

Adding Sensor Nodes to Cooja

Mote Output in Cooja

References

Contents of this section

CONTIKI-OS
Contiki in a nutshell
Requirements

What is Contiki?

CONTIKI-OS in a nutshell:

- Complete environment for programming Sensor Nodes
- Has everything for getting started in making Applications
- In-built simulator called COOJA
- Large pool of sensor compatibility e.g. TelosB, Zolertia Z1

Requirements

Requirements before we begin:

- VMware Virtual Player
 - VMware Workstation 12 Player (recent)
- Instant Contiki
 - Instant Contiki version 2.7/3.0

LOST??? - refer to this :

www.contiki-os.org/start.html and follow the steps.

Contents of this section

Getting Started
Initial Steps
File Structure in Contiki
Terminal Basics

Getting Started

Open VMWare player and click on 'Open a Virtual Machine'

(*Don't Worry!* if it looks different for Windows or MAC-OS! this is for Ubuntu.)

Getting Started (contd.)

- Navigate to your Instant Contiki 2.7 folder and select the ".vmx" file
- After booting of the virtual machine, Login with password: user

Figure: First look of Contiki-OS

File Structure in Contiki

- Click on 'Places' and then 'Home' folder (top left corner)
- target folders: contiki & contiki-2.7 (choose any one and see the folders)

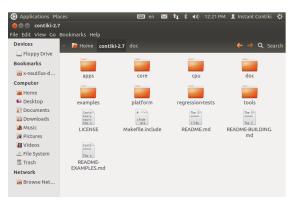
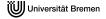
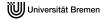



Figure: File Structure in Contiki

Folders in Contiki and their Usage

- apps: applications like webbrowser, telnet etc.
- core: source codes for main core of Contiki
 - core/dev: source codes for devices such has LED, battery sensor, button etc.
 - core/net: folders for MAC, and RPL routing protocol, IPv6 and IPv4, queuing packets and buffers etc.
- cpu: source files for all computational units for sensor nodes
- examples: Implementation of applications
- tools: general tools for testing applications



Terminal basics

[fragile] open terminal on the Desktop screen

- pwd shows the present working directory
- Is lists all the files/folders in the present directory
- cd FOLDERNAME to change directory from present to the desired one (example: from home directory to contiki-2.7)
- cd .. return to the previous directory
- mkdir FOLDERNAME makes a directory in the present working directory
- gedit FILENAME if you want to open a GUI based text editor

Contents of this section

First Program in Contiki: Hello-World
Programming using Terminal
Hello-World files
Getting Output
Understanding codes in Contiki

Programming Basic: Hello-World

Programming using Terminal is Contiki-OS is preferred choice since it makes creation of files, compilation and outputs easier to view and manage.

- Open terminal, change directory to either contiki or contiki-2.7 ¹
- 2. change to the *examples* folder current directory *contiki-2.7/examples/*
- change to the hello-world folder current directory contiki-2.7/examples/hello-world

¹Hint: type cd and type half of the word and press Tab key for the completion

Inside the Hello-world folder

Files observed in the folder ²

- hello-world.c: simple program in Contiki-OS
- Makefile: file to control compilation through terminal
- hello-world.csc: simple simulation file using COOJA simulator
- README.md: a basic manual for the example

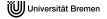
²HINT: use **Is** command

Getting Outputs in Contiki-OS

Assuming the present working directory is *contiki-2.7/examples/hello-world* do the following:

- Currently without any sensor node inserted into the USB slots, in Terminal type make and press enter
- after processing is done, type ./hello-world.native 3
- Observe the Output "Hello, world"
- to terminate program press CTRL+C

```
■ user@instant-contiki: ~/contiki-2.7/examples/hello-world


File Edit View Search Terminal Help

user@instant-contiki: ~/contiki-2.7/examples/hello-world$ ./hello-world.native
Contiki 2.7 started

Rime started with address 2.1

MAC nullmac RDC nullrdc NETWORK Rime
Hello, world
```

³use Tab key instead of typing everything

hello-world.c: How does it work?

```
#include "contiki.h" /* For contiki applications */
#include <stdio.h> /* printf() function usage */
/* Contiki application : Declare the PROCESS */
PROCESS (name_of_your_process, "Process Name");
/* Start vour PROCESS */
AUTOSTART_PROCESSES (&name_of_your_process);
/* Declare what the PROCESS DOES*/
PROCESS THREAD (name of your process, ev, data)
PROCESS BEGIN(); /* Begin the PROCESS*/
printf("Hello, world");
PROCESS END(); /* end the PROCESS */
```


Makefile in Contiki

Makefile is used to compile the source code into appropriate object files for execution. In the main directory there exists a **Makefile.include** that is necessary for compilation with or without platforms.

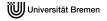
```
# Comments using Pound Sign (#) in Makefile
CONTIKI_PROJECT = your-filename/s #Can be more file
all: $(CONTIKI_PROJECT) # take all the files
```

current folder is *contiki-2.7/examples/hello-world* and you want to find the **Makefile.include** in contiki-2.7 folder and use it here

```
CONTIKI = ../..
include $(CONTIKI)/Makefile.include
```


Contents of this section

Programming a Sensor Node
TelosB Sensor Node
Connecting the TelosB to Contiki-OS
Hello-World program on TelosB



TelosB Sensor Node Functionalities

Figure: TelosB Sensor Node

Picture Courtesy: www.wsnblog.com

Initial Connectivity check for Sensor node

To check connectivity to the Virtual Machine do the following:

- Insert the TelosB in USB slot
- In the Virtual Machine Player click on the tab 'Virtual Machine'
- scroll to 'Removable Devices' and check for TelosB
- click on 'TelosB' and click on 'Connect(disconnect from host)'

It is always advisable to perform these steps when connecting/disconnecting sensor nodes to Contiki-OS

Hello-World on TelosB

In *contiki-2.7/examples/hello-world* do the following in the Terminal:

```
make TARGET=sky savetarget
make motelist
make hello-world.upload
make login
```

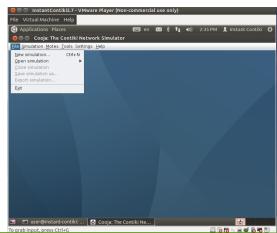
Understanding each line:

- the first input will make the directory target only for TelosB Sky node (good to do when using only one type of Sensor node)
- the second input will display on which USB port the TelosB is connected
- the third input will upload the code onto the TelosB
- the last line will create a login to the TelosB
- Press RESET button on the TelosB and observe output

Output on TelosB

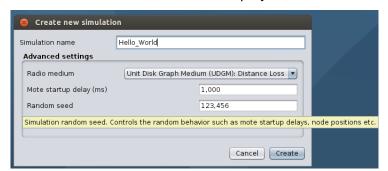
```
connecting to /dev/ttyUSB0 (115200) [OK]
Rime started with address 50.0
MAC 32:00:00:00:00:00:00:00 Contiki 2.7 started.
Node id is set to 50.
CSMA ContikiMAC, channel check rate 8 Hz,
radio channel 26
Starting 'Hello world process'
Hello, world
```

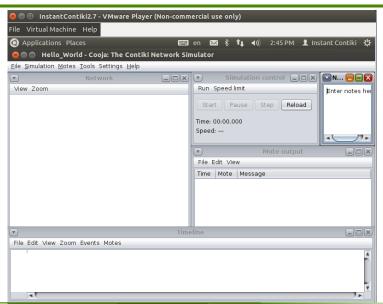

Contents of this section

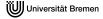

Cooja Simulator in Contiki-OS Hello-World Simulation with Cooja Adding Sensor Nodes to Cooja Mote Output in Cooja

Running Cooja in Contiki

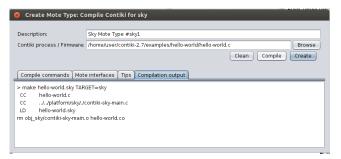
In Terminal:


- \$ cd contiki-2.7/tools/cooja
- \$ ant run

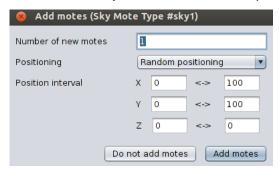

Getting Started


- Click on File New Simulation
- Give a name for the simulation project, click Create

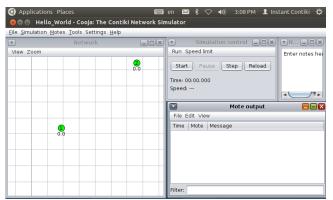
Cooja Environment



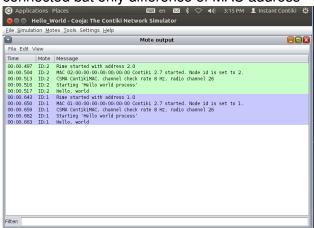
Adding Sensor Nodes (Motes) in Simulation


- Click on MOTES Add MOTES
- In the Create New Mote Type, select Sky Mote
- In the Dialog Box that appears, click on Browse and navigate to contiki-2.7/examples/hello-world
- select the *hello-world.c* file and click on **Compile** button,
 After that click on **Create**

Adding Sensor Nodes (Motes) in Simulation


- after pressing Create, window to add number of Motes in Simulation and their positions appears
- add 2 or any number of motes as per wish . . .

Adding Sensor Nodes (Motes) in Simulation


- The motes are placed randomly in the Network dialog box.
- use the View title-bar option in the Network for adding visual aide to the simulation
- Press Start to run simulation

Mote Output in Cooja

Observe the output in the **Mote Output** Dialog box ... Similar to the output in Terminal with actual Sky mote connected but only difference of MAC address

Exploring More in Cooja

 Right Click on any mote and go through many options available.

Make Projects run in COOJA from Terminal

- In the Terminal navigate to the desired project folder which has a '.csc' file in it
- in Terminal

```
make TARGET=cooja filename.csc
```

Last Line automatically starts the simulator without having to manually add motes.

REFERENCES

for better in-depth understanding for Programming in CONTIKI

Contiki-WIKI:

https://github.com/contiki-os/contiki/wiki

• PROCESSES:

https://github.com/contiki-os/contiki/wiki/
Processes

