

Sommersemester 24

Modulhandbuch

für das Studium

Chemie

Master of Science

gültig in Verbindung mit der Prüfungsordnung MPO 2018/2023

Erzeugt am: 03. April 2024

Übersicht nach Modulgruppen

1) Pflichtbereich	
02-CHE-MA-FMA: Fortgeschrittene Methoden der Analytik (3 CP)	4
02-CHE-MA-FO: Festkörper und Oberflächen (9 CP)	6
02-CHE-MA-ISP: Integriertes Synthesepraktikum (9 CP)	11
02-CHE-MA-SYN: Molekulare Synthese (9 CP)	13
02-CHE-MA-AFC: Aktuelle Forschungsthemen der Chemie (6 CP)	. 16
02-CHE-MA-FPA: Forschungspraktikum A (12 CP)	18
02-CHE-MA-FPB: Forschungspraktikum B (12 CP)	20
2) Masterarbeit	
02-CHE-MA-MasThesCH: Modul Masterarbeit (inklusive Kolloquium) (30 CP)	. 22
3) Wahlpflichtbereich I	
02-CHE-MA-WAC1: Festkörpersynthese und -charakterisierung (6 CP)	. 24
02-CHE-MA-WAC2: Struktur-Eigenschaftsbeziehungen (6 CP)	26
02-CHE-MA-WAC3: Von Polyphosphonsäuren zu Metallorganischen Gerüstmaterialien (MOFs) (6 CP)	29
02-CHE-MA-WAC4: Donor-Akzeptor-Komplexe mit Hauptgruppenelementen (6 CP)	
4) Wahlpflichtbereich II	
02-CHE-MA-WOC1: Homogene Katalyse (6 CP)	33
02-CHE-MA-WOC3: Naturstoffchemie (6 CP)	35
02-CHE-MA-WOC4: Vertiefung Makromolekulare Chemie (6 CP)	37
5) Wahlpflichtbereich III	
02-CHE-MA-WPC1: Heterogene Katalyse und Oberflächenchemie (6 CP)	39
02-CHE-MA-WPC2: Elektronen-induzierte Chemie (6 CP)	. 42
02-CHE-MA-WPC3: Einführung in die Technische Chemie (6 CP)	. 45
02-CHE-MA-WPC4: Herstellung und Charakteristika von Nanopartikeln (6 CP)	. 47
02-CHE-MA-WThC: Computerchemie (6 CP)	. 49
6) Wahlpflichtbereich IV	

02-CHE-MA-WCSS: Chemometrie und spezielle Spurenanalytik (6 CP)	52
02-CHE-MA-WDAT: Verarbeitung und Darstellung Chemischer Daten (6 CP)	55
02-CHE-MA-WMC2: Chemie des Ozeans (6 CP)	57
02-CHE-MA-WMED: Medizinische Chemie (6 CP)	60
02-CHE-MA-WSOV: Strukturaufklärung organischer Verbindungen (6 CP)	62
05-GW-MA-MCM-SO: Solic State Spectroscopy (6 CP)	64
7) Ergänzende Veranstaltungen	
02-CHE-MA-0-CHE: Ergänzende Veranstaltungen im Master Chemie (0 CP)	67

Modul 02-CHE-MA-FMA: Fortgeschrittene Methoden der Analytik Advanced methods of analytics

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Pflichtbereich	keine

Lerninhalte:

In der Veranstaltung Molekulare Analytik sollen folgende Themen behandelt werden:

- Vertiefung der Grundlagen verschiedener Analysemethoden, z. B. Ionisierungsmechanismen und Zerfallskinetik in der Massenspektrometrie, quantenmechanische Beschreibung der magnetischen Resonanz in der NMR-Spektroskopie
- Spezielle Anwendungen, z. B. Massenspektrometrie von Peptiden, verschiedene Heterokerne in der NMR, Grundlagen der Protein-NMR
- Strukturaufklärung organischer Moleküle mit Hilfe kombi-nierter spektroskopischer Methoden (NMR, MS, IR, UV etc.) anhand ausgewählter Beispiele

Lernergebnisse / Kompetenzen:

Die Studierenden sind nach erfolgreicher Teilnahme in der Lage, eine geeignete Methode für die Bearbeitung eines gegebenen analytischen Problems auszuwählen. Dies soll unter besonderer Berücksichtigung des vorhandenen Aggregatzustandes und der zu untersuchenden Fragestellung (Strukturaufklärung, Oberflächen-analytik, Diagnostik, Quantifizierung, etc.) erfolgen. In der Veranstaltung Molekulare Analytik sollen folgende Lernziele erreicht werden:

- Die Studierenden sollen die Grundprinzipien analytischer Methoden unter besonderer Berücksichtigung der NMR-Spektroskopie und der Massenspektrometrie vertieft verstehen.
- Sie sollen einschätzen können, welche Methoden für eine gegebene analytische Fragestellung besonders geeignet sind und den Informationsgehalt der jeweiligen Methode beurteilen können.
- Außerdem sollen die Studierenden in der Lage sein, Strukturen organisch-chemischer Moleküle mit größerer Komplexizität aufzuklären.

Workloadberechnung:

20 h Prüfungsvorbereitung

28 h SWS / Präsenzzeit / Arbeitsstunden

42 h Vor- und Nachbereitung

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n): Deutsch	Modulverantwortliche(r): Prof. Dr. Peter Spiteller
Häufigkeit: Wintersemester, jährlich	Dauer: 1 Semester
Modul gültig seit / Modul gültig bis: WiSe 18/19 / -	ECTS-Punkte / Arbeitsaufwand: 3 / 90 Stunden

Modulprüfungen

Modulprüfung: Modulprüfung Fortgeschrittene Methoden der Analytik

Prüfungstyp: Modulprüfung		
Prüfungsform:	Die Prüfung ist unbenotet?	
Klausur	nein	
Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:		
Prüfungssprache(n):		
Deutsch		

Lehrveranstaltung: Molekulare Analytik	· · · · · · · · · · · · · · · · · · ·
Häufigkeit:	Gibt es parallele Veranstaltungen?
Wintersemester, jährlich	nein
SWS:	Dozent*in:
2	Prof. Dr. Peter Spiteller
	Dr. Wieland Willker
	Dr. Markus Plaumann
	Dr. Thomas Dülcks
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Modulprüfung Fortgeschrittene Methoden der Analytik

Modul 02-CHE-MA-FO: Festkörper und Oberflächen Solids and surfaces

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Pflichtbereich	keine

Lerninhalte:

(Teilmodul Festkörper)

Grundlegende Konzepte

(Strukturaufbau, Defekte, Phononen, Kinetik, Dynamik)

Intrinsische Eigenschaften

(Magnetismus, Verzerrungen, Ordnungsgrad, etc.)

Moderne präparative festkörperchemische Methoden

(Fest-Fest, Phasenumwandlungen, Kristallzüchtung, Prekursoren, Sol-Gel, chemischer Transport,

Hydrothermalreaktionen etc.)

Spezielle Charakterisierungs- und Bearbeitungstechniken der modernen Festkörperchemie

(Röntgenbeugung, Synchrotron-Strahlungsexperimente, Neutronenstreuung, Kleinwinkelstreuung, diffuse

Streuung, Festkörperspektroskopie)

Bildgebung und NMR-Relaxationszeitanalyse

(verschiedene tomographische Verfahren, insbesondere MRT und X-CT)

(Teilmodul Oberflächen)

Thermodynamik von Oberflächen

(Oberflächenenergien, gekrümmte Oberflächen (Kelvin-Gl., Ostwaldreifung), Benetzung und Kontaktwinkel (Young))

Geometrische Struktur von Oberflächen

(mögliche Anordnungen, mathematische Beschreibung von Kristalloberflächen, Rekonstruktion, Relaxation)

Rastersondentechniken

(STM, AFM)

Beugungsbilder von Oberflächen

(LEED, RHEED)

Wechselwirkung von Teilchen mit Oberflächen

(Physisorption, Chemisorption, Adsorptionskinetik, Langmuir-Isotherme, BET, TDS)

Elektronenspektroskopie zur Oberflächenuntersuchung

(XPS, AES, HREELS)

Schwingungsspektroskopie von Adsorbaten und Oberflächen-beschichtungen

(IR-Spektroskopie an Oberflächen, hochauflösende Elektronen-energieverlust-Spektroskopie,

Auswahlregeln, Normalkoordinaten, Schwingungsspektren von Adsorbaten, Abgeschwächte und diffuse Reflexion, photoakustische Spektroskopie, 2D-IR, N-IR, Raman, Reaktionsverfolgung, lateral aufgelöste IR-Spektroskopie)

(Teilmodul Nanoskalige Systeme)

Versuche zu nanoskaligen Systemen

Herstellung und einfache Methoden der Charakterisierung von selbstassemblierenden Monolagen,

Grundlagen und Auswirkungen des Benetzungsverhaltens von Oberflächen, Ag oder Au-Nanopartikel und deren optische Eigenschaften, Eigenschaften von nanoporösem Au, Fe-Oxid-Nanopartikel und deren magnetisches Verhalten)

Vergleichende Auswertung der Versuchsergebnisse des Kurses

(Statistische Auswertung der Ergebnisse, Analyse abweichender Ergebnisse in Interaktion mit allen Teilnehmern)

Präsentation im Seminar

(Darstellung einer Versuchsauswertung, Präsentation einer einschlägigen Aufgabe oder eines

Literaturthemas in Zusammenhang mit dem jeweiligen Versuch)

Lernergebnisse / Kompetenzen:

Die Studierenden haben ein vertieftes Verständnis des Zusammenhanges zwischen strukturellen, physikalischen und chemischen Eigenschaften von Festkörpern und ihren Oberflächen sowie von nanoskaligen Materialien.

Die Studierenden haben neben konzeptionellen Grundlagen auch einen Überblick über wesentliche experimentelle und theoretische Methoden erlangt und können ihre Aussagekraft beurteilen. Die Studierenden können die Grundprinzipien von Methoden zur Analytik von Oberflächen und Festkörpern verstehen, einschätzen, welche Methoden für eine gegebene analytische Fragestellung besonders geeignet sind, den Informationsgehalt der jeweiligen Methode beurteilen und Messdaten oberflächenund festkörperanalytischer Verfahren interpretieren. Ferner haben sie Kompetenzen in der Anwendbarkeit einschlägiger, in der Bachelorausbildung nicht vermittelter synthetischer Methoden erworben.

(Festkörper)

- Den lokalen und globalen Strukturaufbau und Strukturbeziehungen kennen und anwenden können;
- über Kenntnisse zur Festkörpersynthese und -charakterisierung verfügen;
- festkörperchemische Synthesetechniken hinsichtlich der Anwendbarkeit für bestimmte Materialklassen und zur Steuerung von Materialeigenschaften beurteilen und auswählen können;
- Analysemethoden und ihr Potential und ihre Grenzen zur Beantwortung festkörperspezifischer Fragestellungen kennen;
- grundlegende Struktur-Eigenschaftsbeziehungen analysieren, verstehen und anwenden können;
- bildgebende Verfahren (MRT, X-CT) sowie die NMR-Relaxationszeitanalyse kennen und anwenden können

(Oberflächen)

- die Besonderheiten von Oberflächen im Hinblick auf ihre thermodynamischen Eigenschaften verstehen;
- die ideale atomare Struktur auf der Basis der zugrundeliegenden Kristallographie des Festkörpers vorhersagen können und Abweichungen aufgrund von Rekonstruktion/Relaxation kennen;
- das Anwendungspotential und die Grenzen rastersonden-mikroskopischer und elektronenspektroskopischer Methoden sowie von Beugungstechniken an Oberflächen beurteilen können;
- Adorptionsvorgänge verstehen und quantitativ beschreiben können sowie Methoden zur Untersuchung von Adsorbaten kennen;
- Schwingungsspektroskopische Verfahren zur Charakterisierung von Adsorbaten und Oberflächenbeschichtungen kennen und ihre Einsatzmöglichkeiten beurteilen können;
- die Bedeutung von Elektronen für Oberflächenuntersuchung und Bearbeitung kennen;

(Nanoskalige Systeme)

- ausgewählte Verfahren zur Herstellung von Nanopartikeln und selbstassemblierenden Schichten kennen;
- Beispiele der besonderen Eigenschaften nanoskaliger Systeme verstanden haben;
- die sorgfältige Protokollierung und Dokumentation von Experimenten sowie deren statistische Auswertung beherrschen.

Workloadberechnung:

70 h Prüfungsvorbereitung100 h Vor- und Nachbereitung100 h SWS / Präsenzzeit / Arbeitsstunden

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n): Deutsch / Englisch	Modulverantwortliche(r): Prof. Dr. Petra Swiderek
Häufigkeit: Wintersemester, jährlich	Dauer: 1 Semester
Modul gültig seit / Modul gültig bis: WiSe 18/19 / -	ECTS-Punkte / Arbeitsaufwand: 9 / 270 Stunden

Modulprüfungen

Modulprüfung: Modulprüfung Festkörper und Oberflächen

Prüfungstyp: Modulprüfung

Prüfungsform:

Klausur

Die Prüfung ist unbenotet?

nein

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:

1/-/-

Prüfungssprache(n):

Deutsch

Lehrveranstaltung: Festkörperchemie und -analytik		
Häufigkeit:	Gibt es parallele Veranstaltungen?	
Wintersemester, jährlich	nein	
SWS:	Dozent*in:	
2	Dr. Lars Robben	
	Dr. rer. nat. habil. Mohammad Mangir Murshed	
	PD Dr. rer.nat. Wolfgang Dreher	
	Prof. Dr. Thorsten Gesing	
Unterrichtsprache(n):	'	
Deutsch		
Lehrform(en):	Zugeordnete Modulprüfung:	
Vorlesung	Modulprüfung Festkörper und Oberflächen	

Lehrveranstaltung: Oberflächen und Grenzflächen	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Wintersemester, jährlich	nein
SWS:	Dozent*in:
2	Prof. Dr. Andreas Hartwig
	Dr. Volkmar Zielasek
	Prof. Dr. Petra Swiderek
	Prof. Dr. Marcus Bäumer

Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Modulprüfung Festkörper und Oberflächen
Lehrveranstaltung: Nanoskalierte Sys	steme
Häufigkeit:	Gibt es parallele Veranstaltungen?
Wintersemester, jährlich	nein
SWS:	Dozent*in:
	Prof. Dr. Petra Swiderek
	Arne Wittstock
	Prof. Dr. Marcus Bäumer
Unterrichtsprache(n):	'
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Praktikum	Modulprüfung Festkörper und Oberflächen
Lehrveranstaltung: Seminar zu "Nano	oskalierte Systeme"
Häufigkeit:	Gibt es parallele Veranstaltungen?
Wintersemester, jährlich	nein
SWS:	Dozent*in:
1	Prof. Dr. Petra Swiderek
	Arne Wittstock
	Prof. Dr. Marcus Bäumer
Unterrichtsprache(n):	·
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Seminar	Modulprüfung Festkörper und Oberflächen

Modul 02-CHE-MA-ISP: Integriertes Synthesepraktikum

Combined lab course

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:	
Pflichtbereich	keine	

Lerninhalte:

Das Modul deckt folgende Themen ab:

- Grundlegende Synthesemethoden der anorganischen und organischen Chemie in Theorie und Praxis
- · Syntheseplanung und Retrosynthese
- Anfertigung von ausgewählten Literaturpräparaten

Vermittlung unterschiedlicher präparativ-synthetischer Methoden und Techniken wie z.B.

- Elektrochemische Reaktionen
- · Photochemische Reaktionen
- · Reaktionen mit Mikrowellen und Ultraschall
- · Ozonolyse
- · Reaktionen unter Druck
- Reaktionen in tiefkalten Flüssigkeiten
- Synthesen mit nachwachsende Rohstoffe als Ausgangsmaterialien
- Reaktionen und arbeiten unter Inertgas und im Vakuum
- · Arbeiten mit dem Handschuhkasten sowie der
- Spektroskopisch/Analytischen Charakterisierung der Präparate

Lernergebnisse / Kompetenzen:

Die Studierenden sind nach Besuch des Moduls in der Lage

- komplexe Synthesen selbständig zu planen und durchzuführen
- moderne Arbeitstechniken anzuwenden
- Prinzipien der stereoselektiven Synthese anzuwenden
- Substanzklassen zu benennen und zuzuordnen

Workloadberechnung:

74 h Vor- und Nachbereitung

196 h SWS / Präsenzzeit / Arbeitsstunden

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul?

nein

Unterrichtsprache(n): Deutsch	Modulverantwortliche(r): Dr. Matthias Beckmann
Häufigkeit: Wintersemester, jährlich	Dauer: 1 Semester
Modul gültig seit / Modul gültig bis: WiSe 18/19 / -	ECTS-Punkte / Arbeitsaufwand: 9 / 270 Stunden

Modulprüfungen

Modulprüfung: Kombinationsprüfung Integriertes Synthesepraktikum

Prüfungstyp: Modulprüfung

Prüfungsform:

Siehe Freitext

Die Prüfung ist unbenotet?

nein

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:

2/-/-

Prüfungssprache(n):

Deutsch

Beschreibung:

Mündliche Gruppenprüfung 50%

Portfolio 50%

Lehrveranstaltung: Integriertes Synthesepraktikum	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Wintersemester, jährlich	nein
sws:	Dozent*in:
14	Prof. Dr. Jens Beckmann
	Prof. Dr. Peter Spiteller
	Prof. Dr. Boris J. Nachtsheim
	Dr. Emanuel Hupf
	Prof. Dr. Anne Staubitz
	Arne Wittstock
	Dr. Martina Osmers
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Praktikum	Kombinationsprüfung Integriertes Synthesepraktikum

Modul 02-CHE-MA-SYN: Molekulare Synthese

Molecular synthesis

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:	
Pflichtbereich	keine	

Lerninhalte:

Das Modul vermittelt Kenntnisse in den folgenden Bereichen:

- Organyle der Haupt-und Nebengruppenelemente
- · Synthesestrategien
- Strukturen
- · Bindungstheorien
- Anwendungen
- Cyclopentadienylkomplexe
- · Metallcarbonyle und -verwandte Liganden
- MetallclusterKomplexe mit #-Donor Liganden
- Carbenkomplexe
- Carbinkomplexe
- Olefinkomplexe
- Alkinkomplexe
- · Allyl-und Enyl-Komplexe
- Arenkomplexe
- · Retrosynthetische Syntheseplanung
- Methoden zur C-C-Verknüpfung unter Berücksichtigung von Stereoselektivität
- Funktionalisierung von Grundgerüsten unter Einschluss von Schutzgruppentechniken
- Wichtige Naturstoffsynthesen unter besonderer Berücksichtigung der Heterocyclenchemie
- Spezielle Synthesemethoden, wie Photochemie, Elektrochemie etc.

Lernergebnisse / Kompetenzen:

Nach Ende dieses Moduls verfügen die Studentinnen und Studenten über grundlegende Kenntnisse der metallorganischen Chemie. Sie sind in der Lage

- metallorganische Substanzen zu klassifizieren und deren Herstellung und Struktur zu verstehen.
- moderne Synthesemethoden unter Berücksichtigung von Reaktivität und Selektivität zu überblicken
- Syntheseplanungen unter Nutzung der Retrosynthese-und Synthon-Konzepte vorzunehmen

Workloadberechnung:

112 h Vor- und Nachbereitung

112 h SWS / Präsenzzeit / Arbeitsstunden

46 h Prüfungsvorbereitung

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n):	Modulverantwortliche(r):
Deutsch	Prof. Dr. Jens Beckmann
Häufigkeit:	Dauer:
Wintersemester, jährlich	1 Semester

Modul gültig seit / Modul gültig bis:	ECTS-Punkte / Arbeitsaufwand:
WiSe 18/19 / -	9 / 270 Stunden

Modulprüfungen

Modulprüfung: Modulteilprüfung Metallorganische Chemie Prüfungstyp: Modulprüfung Prüfungsform: Die Prüfung ist unbenotet? Klausur nein Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:

1/-/-

Prüfungssprache(n):

Deutsch

Modulprüfung: Modulteilprüfung Organische Chemie Prüfungstyp: Modulprüfung

Prüfungsform: Die Prüfung ist unbenotet?

Klausur nein

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:

1/-/-

Prüfungssprache(n):

Deutsch

Lehrveranstaltung: Metallorganische Chemie	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Wintersemester, jährlich	nein
sws:	Dozent*in:
3	Prof. Dr. Jens Beckmann
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Modulteilprüfung Metallorganische Chemie

Lehrveranstaltung: Übungen zur Metallorganischen Chemie	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Wintersemester, jährlich	nein
sws:	Dozent*in:
1	Prof. Dr. Jens Beckmann
Unterrichtsprache(n):	
Deutsch	

Lehrform(en):	Zugeordnete Modulprüfung:
Übung	Modulteilprüfung Metallorganische Chemie
Lehrveranstaltung: Synthesemethoden	und -planung
Häufigkeit:	Gibt es parallele Veranstaltungen?
Wintersemester, jährlich	nein
SWS:	Dozent*in:
3	Prof. Dr. Boris J. Nachtsheim
	Prof. Dr. Anne Staubitz
	Arne Wittstock
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Modulteilprüfung Organische Chemie
Lehrveranstaltung: Übungen zu "Synth	esemethoden und -planung"
Häufigkeit:	Gibt es parallele Veranstaltungen?
Wintersemester, jährlich	nein
SWS:	Dozent*in:
1	Prof. Dr. Boris J. Nachtsheim
	Prof. Dr. Anne Staubitz
	Arne Wittstock
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Übung	Modulteilprüfung Organische Chemie

Modul 02-CHE-MA-AFC: Aktuelle Forschungsthemen der Chemie

Topics of contemporary chemistry

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Pflichtbereich	keine

Lerninhalte:

Die Literaturarbeit zu einer aktuellen Forschungsthematik erstellen die Studierenden in individueller Absprache mit einem selbstgewählten Betreuer. Die Themen lehnen sich daher in der Regel an die Forschungsgebiete der am Studiengang beteiligten Arbeitsgruppen an.

Die Vorträge der Studierenden sind die Darstellung eigener Ergebnisse. Die zu präsentierenden eigenen Ergebnisse entstammen einem der beiden im gleichen Semester durchzuführenden Forschungspraktika. Neben der Diskussion der wissenschaftlichen Inhalte des Vortrages erfolgt eine Besprechung der Vortragstechnik und der Strukturierung der Inhalte (rhetorische Reflexion).

Die Vorträge aus dem Teil GDCh Kolloquium werden von externen nationalen und internationalen Referenten gehalten. Die Themen werden in jedem Semester neu zusammengestellt und entstammen allen Teilbereichen der Chemie bis hin zu gesellschaftswissenschaftlichen Beiträgen der Chemie.

Lernergebnisse / Kompetenzen:

Studierende sind in der Lage sich einem aktuellen Forschungsgebiet anhand aktueller eigener Literaturrecherchen kritisch anzunähern und die essentiellen Inhalte, Thesen sowie ungelöste Probleme und offene Fragen zu erkennen und zusammenfassend darzustellen.

Ebenso sind die Studierenden in die Lage, eigene Ergebnisse kritisch aufzubereiten und daraus einen Vortrag zu gestalten. Besonderer Wert wird auf eine strukturierte und logische Nachricht an den Zuhörer gelegt. Die Studierenden sind befähigt, die zu präsentierenden wissenschaftlichen Fragen einleuchtend zu definieren, mit Hypothesen zu hinterlegen und dann die Hypothesen aufgrund der erhaltenen Ergebnisse zu bestätigen oder zu widerlegen.

Des Weiteren sind die Studierenden in der Lage, Vorträgen aus einer großen fachlichen Breite auf dem neuesten Stand der Forschung zu folgen und sinnvolle Fragen an den Vortragenden zu formulieren. Diese Vorträge sind zum Teil in englischer Sprache.

Workloadberechnung:

152 h Vor- und Nachbereitung

28 h SWS / Präsenzzeit / Arbeitsstunden

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? ja

Unterrichtsprache(n):	Modulverantwortliche(r):
Deutsch / Englisch	Prof. Dr. Jens Beckmann
Häufigkeit:	Dauer:
Wintersemester, jährlich	1 Semester
Modul gültig seit / Modul gültig bis:	ECTS-Punkte / Arbeitsaufwand:
WiSe 18/19 / -	6 / 180 Stunden

ieses Modul ist unbenotet!

Modulprüfungen Modulprüfung: Kombinationsprüfung Aktuelle Forschungsthemen der Chemie Prüfungstyp: Modulprüfung Prüfungsform: Referat mit schriftlicher Ausarbeitung Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen: - / 2 / Prüfungssprache(n): Deutsch

Laborata de la composición de la College	autium mit Daitui aan dan Chudianandan
Lehrveranstaltung: Chemisches Kollo	quium mit Beitragen der Studierenden
Häufigkeit:	Gibt es parallele Veranstaltungen?
Wintersemester, jährlich	nein
SWS:	Dozent*in:
2	
Unterrichtsprache(n):	,
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Seminar	Kombinationsprüfung Aktuelle Forschungsthemen
	der Chemie
Lehrveranstaltung: Chemisches Kollo	quium
Häufigkeit:	Gibt es parallele Veranstaltungen?
Wintersemester, jährlich	nein
SWS:	Dozent*in:
1	
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Kombinationsprüfung Aktuelle Forschungsthemen
	der Chemie

Modul 02-CHE-MA-FPA: Forschungspraktikum A Lab rotation A

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:	
Pflichtbereich	keine	

Lerninhalte:

Allgemeines Ziel dieses Moduls ist die Heranführung der Studierenden an das selbstständige wissenschaftliche Arbeiten und die Auswertung und Präsentation wissenschaftlicher Ergebnisse.

- 1. Gemeinsam wird mit dem Studierenden ein Teilthema der jeweiligen Fachdisziplin ausgewählt, welches einen Beitrag zu aktuell laufenden Forschungsarbeiten darstellt. Nach einer Einarbeitung in die Literatur stellen die Studierenden eine aus dem Thema abgeleitete wissenschaftliche Fragestellung mit einem Arbeitsplan vor, die dann intensiv diskutiert und abgestimmt wird.
- 2. Den Hauptteil stellt die praktische experimentelle Bearbeitung dar, wobei die Arbeiten möglichst viele fachtypische Arbeitstechniken beinhalten. Die Schwerpunkte werden nach den Befähigungen der Studierenden und abhängig vom Thema gelegt.

Dieser Teil enthält Wahlpflichtoptionen mit einer Dauer von 7-9 Wochen:

WP1: Die praktischen Arbeiten werden in einer Forschungsgruppe am Fachbereich 2 oder einem anderen Fachbereich an der Universität Bremen durchgeführt.

WP2: Die praktischen Arbeiten werden als in eine externe Forschungseinrichtung im In- oder Ausland integrierte*r Praktikant*in durchgeführt.

3. Die Ergebnisse werden in einem Forschungsbericht dargelegt. Als Orientierung für das gesamte methodische Vorgehen dient der unter Literatur angegebene Artikel. Die Prüfung fällt auch bei externer Durchführung der praktischen Arbeiten (s.o. WP2) in die Verantwortung eine*r Prüfungsberechtigten des Fachbereich 2 der Universität Bremen.

Lernergebnisse / Kompetenzen:

Die Studenten sollen in der Lage sein, ausgehend von einem umrissenen Themenfeld eine wissenschaftliche Fragestellung zu definieren, daraus Hypothesen abzuleiten und einen Arbeitsplan zu erarbeiten, um diese Hypothesen mit geeigneten Experimenten zu bestätigen oder zu widerlegen. Ferner sollen sie erlernen, einen Forschungsbericht strukturiert, nachvollziehbar und sprachlich angemessen auszuarbeiten.

Workloadberechnung:

120 h Vor- und Nachbereitung

240 h SWS / Präsenzzeit / Arbeitsstunden

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul?

ja

Das Modul beinhaltet Wahlpflichtoptionen mit einer Dauer von 7-9 Wochen:

WP1: Die praktischen Arbeiten werden in einer Forschungsgruppe an der Universität Bremen durchgeführt.

WP2: Die praktischen Arbeiten werden als in eine externe Forschungseinrichtung im In- oder Ausland integrierte*r Praktikant*in durchgeführt.

Unterrichtsprache(n):	Modulverantwortliche(r):	
Deutsch	N.N.	

Häufigkeit:	Dauer:
Wintersemester, jährlich	1 Semester
Modul gültig seit / Modul gültig bis:	ECTS-Punkte / Arbeitsaufwand:
WiSe 18/19 / -	12 / 360 Stunden

Modulprüfungen

Modulprüfung: Kombinationsprüfung Forschungspraktikum A

Prüfungstyp: Modulprüfung

Prüfungsform:
Referat mit schriftlicher Ausarbeitung

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:
2 / - /
Prüfungssprache(n):
Deutsch

Beschreibung:
Mündliche Prüfung: 30%

Praktikumsbericht: 70%

Lehrveranstaltung: Forschungspraktikum A	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Wintersemester, jährlich	ja
sws:	Dozent*in:
16	
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Praktikum	Kombinationsprüfung Forschungspraktikum A

Modul 02-CHE-MA-FPB: Forschungspraktikum B Lab rotation B

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:	
Pflichtbereich	keine	

Lerninhalte:

Allgemeines Ziel dieses Moduls ist die Heranführung der Studierenden an das selbstständige wissenschaftliche Arbeiten und die Auswertung und Präsentation wissenschaftlicher Ergebnisse.

- 1. Gemeinsam wird mit dem Studierenden ein Teilthema der jeweiligen Fachdisziplin ausgewählt, welches einen Beitrag zu aktuell laufenden Forschungsarbeiten darstellt. Nach einer Einarbeitung in die Literatur stellen die Studierenden eine aus dem Thema abgeleitete wissenschaftliche Fragestellung mit einem Arbeitsplan vor, die dann intensiv diskutiert und abgestimmt wird.
- 2. Den Hauptteil stellt die praktische experimentelle Bearbeitung dar, wobei die Arbeiten möglichst viele fachtypische Arbeitstechniken beinhalten. Die Schwerpunkte werden nach den Befähigungen der Studierenden und abhängig vom Thema gelegt.

Dieser Teil enthält Wahlpflichtoptionen mit einer Dauer von 7-9 Wochen:

WP1: Die praktischen Arbeiten werden in einer Forschungsgruppe am Fachbereich 2 oder einem anderen Fachbereich an der Universität Bremen durchgeführt.

WP2: Die praktischen Arbeiten werden als in eine externe Forschungseinrichtung im In- oder Ausland integrierte*r Praktikant*in durchgeführt.

3. Die Ergebnisse werden in einem Forschungsbericht dargelegt. Als Orientierung für das gesamte methodische Vorgehen dient der unter Literatur angegebene Artikel. Die Prüfung fällt auch bei externer Durchführung der praktischen Arbeiten (s.o. WP2) in die Verantwortung eine*r Prüfungsberechtigten des Fachbereich 2 der Universität Bremen.

Lernergebnisse / Kompetenzen:

Die Studenten sollen in der Lage sein, ausgehend von einem umrissenen Themenfeld eine wissenschaftliche Fragestellung zu definieren, daraus Hypothesen abzuleiten und einen Arbeitsplan zu erarbeiten, um diese Hypothesen mit geeigneten Experimenten zu bestätigen oder zu widerlegen. Ferner sollen sie erlernen, einen Forschungsbericht strukturiert, nachvollziehbar und sprachlich angemessen auszuarbeiten.

Workloadberechnung:

240 h SWS / Präsenzzeit / Arbeitsstunden

120 h Vor- und Nachbereitung

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul?

ja

Das Modul beinhaltet Wahlpflichtoptionen mit einer Dauer von 7-9 Wochen:

WP1: Die praktischen Arbeiten werden in einer Forschungsgruppe an der Universität Bremen durchgeführt.

WP2: Die praktischen Arbeiten werden als in eine externe Forschungseinrichtung im In- oder Ausland integrierte*r Praktikant*in durchgeführt.

Unterrichtsprache(n):	Modulverantwortliche(r):
Deutsch	N.N.

Häufigkeit: Wintersemester, jährlich	Dauer: 1 Semester
Modul gültig seit / Modul gültig bis: WiSe 18/19 / -	ECTS-Punkte / Arbeitsaufwand: 12 / 360 Stunden

Modulprüfungen

Modulprüfung: Kombinationsprüfung Forschungspraktikum B

Prüfungstyp: Modulprüfung

Prüfungsform:
Referat mit schriftlicher Ausarbeitung

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:
2 / - /
Prüfungssprache(n):
Deutsch

Beschreibung:
Mündliche Prüfung: 30%

Praktikumsbericht: 70%

Lehrveranstaltung: Forschungspraktikum B	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Wintersemester, jährlich	ja
sws:	Dozent*in:
16	
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Praktikum	Kombinationsprüfung Forschungspraktikum B

Modul 02-CHE-MA-MasThesCH: Modul Masterarbeit (inklusive Kolloquium) Module Master Thesis (incl. colloquium)

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:	
Masterarbeit	keine	

Lerninhalte:

Allgemeines Ziel dieses Moduls ist das vertiefte Training der Studierenden für das selbstständige wissenschaftliche Arbeiten und die Auswertung und Präsentation wissenschaftlicher Ergebnisse. Dazu wirdim Sinne des Forschenden Lernens ein Forschungsprojekt eigenständig und individuell unter der Betreuung eines erfahrenen Wissenschaftlers durchgeführt. Die Masterarbeit wird betreut und durchgeführt unter den Konditionen des Fachbereich 2 an der Universität Bremen und gemäß der Prüfungsordnung des zugehörigen Studienprogramms.

Vertiefte Bearbeitung eines aktuellen oder grundlegenden Themas in einer Arbeitsgruppe der Chemie mit der Aufstellung eines Arbeitsplanes, Literaturrecherche, Erstellung der Versuchsdesigns, Einarbeitung in die entsprechende Methodik, Dokumentation der Ergebnisse, Datenauswertung, Diskussion der Ergebnisse unter Berücksichtigung der wissenschaftlichen Publikationen, Erstellung einer Masterarbeit sowie mündlicher Präsentation und Verteidigung der Arbeit.

Wahlpflichtoptionen im Modul Masterarbeit mit einer Dauer von 24 Wochen (oder auf Antrag 30 Wochen):

WP1: Die praktischen Arbeiten werden in einer Forschungsgruppe am Fachbereich 2 oder einem anderen Fachbereich an der Universität Bremen durchgeführt.

WP2: Die praktischen Arbeiten werden als in eine externe Forschungseinrichtung im In- oder Ausland integrierte*r Praktikant*in durchgeführt.

Lernergebnisse / Kompetenzen:

In diesem Modul sollen die Studierenden eine wissenschaftliche Arbeit anfertigen, die zeigt, dass sie in der Lage sind innerhalb einer vorgegebenen Frist eine Aufgabe aus dem Gebiet der Chemie selbständig mitwissenschaftlichen Methoden zu bearbeiten sowie die Ergebnisse in schriftlicher Form darzustellen und kritisch zu diskutieren. Darüber hinaus sollen die Studierenden zeigen, dass sie die eigene Arbeit in öffentlicher wissenschaftlicher Diskussion verteidigen können.

Workloadberechnung:

900 h Selbstlernstudium

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n):	Modulverantwortliche(r):
Deutsch	N.N.
Häufigkeit:	Dauer:
Sommersemester, jährlich	1 Semester
Modul gültig seit / Modul gültig bis:	ECTS-Punkte / Arbeitsaufwand:
WiSe 23/24 / -	30 / 900 Stunden

Modulprüfungen			
Modulprüfung: Kolloquium	Modulprüfung: Kolloquium		
Prüfungstyp: Modulprüfung			
Prüfungsform:	Die Prüfung ist unbenotet?		
Kolloquium	nein		
Anzahl Prüfungsleistungen / Studienleistungen 1 / - / -	n / Prüfungsvorleistungen:		
Prüfungssprache(n): Deutsch			
Beschreibung: 25%			
Modulprüfung: Masterarbeit			
Prüfungstyp: Modulprüfung			
Prüfungsform:	Die Prüfung ist unbenotet?		
Masterarbeit	nein		
Anzahl Prüfungsleistungen / Studienleistungen 1 / - / -	n / Prüfungsvorleistungen:		
Prüfungssprache(n): Deutsch			
Beschreibung: 75%			
Lehrveranstaltungen des Moduls			
Lehrveranstaltung: Seminar			
Häufigkeit:	Gibt es parallele Veranstaltungen?		
jedes Semester	nein		
SWS:	Dozent*in:		
1			
Unterrichtsprache(n):			
Deutsch			
Lehrform(en):	Zugeordnete Modulprüfung:		
Begleitseminar (zu Bachelor-/Masterarbeit)			
Zugeordnete Lehrveranstaltungen			
Seminar zur Masterarbeit (Seminar)			
2 SWS, n.V. alle Hochschullehrer des Studienganges			

Modul 02-CHE-MA-WAC1: Festkörpersynthese und -charakterisierung

Solid state Synthesis and characterization

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Wahlpflichtbereich I	Grundkenntnisse in Röntgenbeugung sind von
	Vorteil

Lerninhalte:

Das Modul soll vertiefend über moderne präparative Methoden sowie spezielle Charakterisierungsund Bearbeitungstechniken der modernen Festkörperchemie bieten. Dabei sollen festkörperspezifische Präparationsprobleme (Thermodynamik, Defekte, Kinetik, Metastabilität) gemeinsam mit klassischen und modernen Synthesemethoden (Fest-Fest, Phasenumwandlungen, Prekursoren, Sol-Gel, Hydrothermalreaktionen etc.) behandelt und diskutiert werden.

Dabei soll an ausgewählten (forschungsnahen) Beispielen verschiedener Synthesemethoden praktische Erfahrung gesammelt werden und die Produkte identifiziert und charakterisiert werden.

Lernergebnisse / Kompetenzen:

Nach Abschluss des Moduls sind die Studierenden in der Lage:

- festkörperchemische Synthesereaktionen zu benennen und anzuwenden;
- röntgenographische und spektroskopische Phasenidentifikation vorzunehmen;
- · die Anwendbarkeit von Analysemethoden zur Beantwortung

Workloadberechnung:

70 h SWS / Präsenzzeit / Arbeitsstunden

20 h Prüfungsvorbereitung

90 h Vor- und Nachbereitung

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n): Deutsch / Englisch	Modulverantwortliche(r): Prof. Dr. Thorsten Gesing
Häufigkeit: Sommersemester, jährlich	Dauer: 1 Semester
Modul gültig seit / Modul gültig bis: WiSe 18/19 / -	ECTS-Punkte / Arbeitsaufwand: 6 / 180 Stunden

Modulprüfungen

Modulprüfung: Kombinationsprüfung Festkörpersynthese und -charakterisierung	
Prüfungstyp: Modulprüfung	
Prüfungsform:	Die Prüfung ist unbenotet?
Klausur	nein

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:

1/1/-

Prüfungssprache(n): Deutsch	
Beschreibung: 1 SL: Präsentation	

Lehrveranstaltungen des Moduls

Lehrveranstaltung: Festkörperreaktionen	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
1	Prof. Dr. Thorsten Gesing
Unterrichtsprache(n):	'
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Kombinationsprüfung Festkörpersynthese und -
	charakterisierung

Festkörperreaktionen (Seminar)

Weitere Informationen über die Lehrenden in Stud.IP.

Lehrveranstaltung: Festkörpersynthese und -charakterisierung	
läufigkeit: Gibt es parallele Veranstaltungen?	
Sommersemester, jährlich	nein
SWS:	Dozent*in:
4	Prof. Dr. Thorsten Gesing
Unterrichtsprache(n):	,
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Praktikum	Kombinationsprüfung Festkörpersynthese und -
	charakterisierung
Zugeordnete Lehrveranstaltungen	1

Festkörpersynthese und -charakterisierung (Praktikum)

Weitere Informationen über die Lehrenden in Stud.IP. maximal 5 Teilnehmer

Modul 02-CHE-MA-WAC2: Struktur-Eigenschaftsbeziehungen

Structure property relationship

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Wahlpflichtbereich I	Grundkenntnisse in Festkörperchemie sind von
	Vorteil

Lerninhalte:

Einführung in Materialen, Strukturen und Eigenschaften

- · Historische Perspektiven, kristalline und nicht-kristalline
- · Bindungs-Valenz-Theorie
- · Defekte und Störungen

Thermische Materialeigenschaften

- Thermische Expansion (Überblick, Isotrop und Anisotrop)
- Thermischer Expansionskoeffizient, Anisotropie-Faktoren, Grüneisen Funktion)
- · Mathematische Behandlung der thermischen Expansion
- Tieftemperaturstabilitäten

Magnetische Materialeigenschaften

- Genereller Überblick und Hysterese
- Neutronen, Magnetismus und magnetische Strukturen

Tensor-Eigenschaften von Materialien

- Genereller Überblick
- Tensor der thermischen Expansion
- Tensor der elektrischen Leitfähigkeit

Eigenschaftsuntersuchungen

- Fallstudie 1 (z.Zt.: Sodalithe, Röntgenbeugung, Infrarot, Raman und NMR Spektroskopie
- Fallstudie 2(z.Zt.: Mullite, Neutronenbeugung, thermische Expansion, Paar-Korrelationsfunktion)

(Inhalt der Fallstudien kann an aktuelle Forschungsthemen angepasst werden)

Lernergebnisse / Kompetenzen:

Nach Besuch des Moduls sind Studierende in der Lage, folgende Themen zu verstehen, zu beschreiben bzw. umzusetzen:

- · Den kristallinen und nicht-kristallinen Festkörper
- Thermische Eigenschaften von Festkörpern
- · Magnetismus und magnetische Strukturen
- Tensor-Eigenschaften von Festkörpern
- In Fallstudien Strukturen und deren physikalischen Eigenschaften zu korrelieren
- Struktur-Eigenschaftsbeziehungen aus der Fachliteratur aufzuarbeiten und korrekt wiederzugeben

Workloadberechnung:

56 h SWS / Präsenzzeit / Arbeitsstunden

24 h Prüfungsvorbereitung

100 h Vor- und Nachbereitung

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n):	Modulverantwortliche(r):
Deutsch / Englisch	Prof. Dr. Thorsten Gesing
Häufigkeit:	Dauer:
Sommersemester, jährlich	1 Semester
Modul gültig seit / Modul gültig bis:	ECTS-Punkte / Arbeitsaufwand:
WiSe 18/19 / -	6 / 180 Stunden

Modulprüfungen

Modulprüfung: Kombinationsprüfung Struktur-Eigenschaftsbeziehungen Prüfungstyp: Modulprüfung Prüfungsform: Die Prüfung ist unbenotet? Klausur nein

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:

1/1/-

Prüfungssprache(n):

Deutsch

Beschreibung:

1 SL: Seminarvortrag

Lehrveranstaltungen des Moduls

Lehrveranstaltung: Struktur-Eigenschaftsbeziehungen	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
2	Dr. rer. nat. habil. Mohammad Mangir Murshed
	Prof. Dr. Thorsten Gesing
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Kombinationsprüfung Struktur-
	Eigenschaftsbeziehungen
Zugeordnete Lehrveranstaltungen	<u> </u>

Struktur-Eigenschaftsbeziehungen (Vorlesung)

Weitere Informationen über die Lehrenden in Stud.IP.

Lehrveranstaltung: Seminar zu "Struktur-Eigenschaftsbeziehungen"	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein

SWS:	Dozent*in:	
2	Dr. rer. nat. habil. Mohammad Mangir Murshed	
	Prof. Dr. Thorsten Gesing	
Unterrichtsprache(n):		
Deutsch		
Lehrform(en):	Zugeordnete Modulprüfung:	
Seminar	Kombinationsprüfung Struktur-	
Eigenschaftsbeziehungen		
Zugeordnete Lehrveranstaltungen		
Seminar zu "Struktur-Eigenschaftsbeziehungen" (Seminar) Weitere Informationen über die Lehrenden in Stud.IP.		

Modul 02-CHE-MA-WAC3: Von Polyphosphonsäuren zu Metallorganischen Gerüstmaterialien (MOFs)

From Polyphosphonic Acids to Metal Organic Frameworks (MOFs)

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Wahlpflichtbereich I	Gute Kenntnisse in Anorganischer Chemie, in
	Metallorganischer Chemie, im experimentellen
	Arbeiten im Labor

Lerninhalte:

- · Definition poröser Materialien
- Topologische Beschreibung von Netzwerkstrukturen
- Secondary Building Units (SBUs)
- · Organische Linker
- Stoffklassen
- Metallorganische Gerüstmaterialien (MOFs)
- Kovalent-gebundene Gerüstmaterialien (COFs)
- · Synthesestrategien
- Synthese und Vernetzung starrer multifunktionaler Bausteine
- · Spezifische Analysemethoden

Lernergebnisse / Kompetenzen:

Die Studierenden sollen nach erfolgreicher Teilnahme mit den Grundlagen dieses Forschungsgebiets vertraut und in einem aktuellen Projekt an den Stand der Forschung geführt worden sein. Der präparative Umgang und die stoffliche Charakterisierung von porösen anorganischen Gerüstmaterialien sollen beim experimentellen Arbeiten erlernt werden.

Workloadberechnung:

68 h Vor- und Nachbereitung

112 h SWS / Präsenzzeit / Arbeitsstunden

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n):	Modulverantwortliche(r):
Deutsch	Prof. Dr. Jens Beckmann
Häufigkeit:	Dauer:
Sommersemester, jährlich	1 Semester
Modul gültig seit / Modul gültig bis:	ECTS-Punkte / Arbeitsaufwand:
WiSe 18/19 / -	6 / 180 Stunden

Modulprüfungen

Modulprüfung: Modulprüfung Von Polyphosphonsäuren zu Metallorganischen Gerüstmaterialien (MOFs)	
Prüfungstyp: Modulprüfung	
Prüfungsform: Die Prüfung ist unbenotet?	
Praktikumsbericht	nein

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen: 1 / - / Prüfungssprache(n): Deutsch

Lehrveranstaltung: Poröse Anorganische Gerüstmaterialien	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
8	Prof. Dr. Jens Beckmann
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Seminar	Modulprüfung Von Polyphosphonsäuren zu
Praktikum	Metallorganischen Gerüstmaterialien (MOFs)

Modul 02-CHE-MA-WAC4: Donor-Akzeptor-Komplexe mit Hauptgruppenelementen Donor-Acceptor-Complexes on main group elements

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Wahlpflichtbereich I	Gute Kenntnisse in Anorganischer Chemie, in
	Metallorganischer Chemie, im experimentellen
	Arbeiten im Labor

Lerninhalte:

- Lewissäuren und -basen der Hauptgruppenelemente
- Reguläre und frustrierte Lewispaare (FLPs)
- Anwendungen von FLPs zur Aktivierungen kleiner Moleküle
- Push-Pull-Komplexe mit Lewis-amphoteren Stoffen
- Peri-substituierte (Ace)naphthalin-Derivate mit erzwungenen Wechselwirkungen zwischen den Substituenten
- · Interpretation struktureller und spektroskopischer Parameter
- Maßgeschneiderte Pinzettenliganden

Lernergebnisse / Kompetenzen:

Die Studierenden sind nach erfolgreicher Teilnahme mit den Grundlagen dieses Forschungsgebiets vertraut und in einem aktuellen Projekt an den Stand der Forschung geführt worden. Der präparative Umgang und die stoffliche Charakterisierung von Donor-Akzeptorkomplexen der Hauptgruppenelemente sind beim experimentellen Arbeiten erlernt worden.

Workloadberechnung:

112 h SWS / Präsenzzeit / Arbeitsstunden

68 h Vor- und Nachbereitung

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n):	Modulverantwortliche(r):
Deutsch	Prof. Dr. Jens Beckmann
Häufigkeit:	Dauer:
Sommersemester, jährlich	1 Semester
Modul gültig seit / Modul gültig bis:	ECTS-Punkte / Arbeitsaufwand:
WiSe 18/19 / -	6 / 180 Stunden

Modulprüfungen

Modulprüfung: Modulprüfung Donor-Akzeptor-Komplexe mit Hauptgruppenelementen	
Prüfungstyp: Modulprüfung	
Prüfungsform:	Die Prüfung ist unbenotet?
Praktikumsbericht	nein

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:

1 / - / -

Prüfungssprache(n):	
Deutsch	

Lehrveranstaltungen des Moduls

Lehrveranstaltung: Liganden und Substituenten in der Organometallchemie	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS: Dozent*in:	
8	Prof. Dr. Jens Beckmann
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Seminar	Modulprüfung Donor-Akzeptor-Komplexe mit
Praktikum	Hauptgruppenelementen
Zumanulu ata I alimianan ataltum nan	

Zugeordnete Lehrveranstaltungen

Liganden und Substituenten in der Organometallchemie (Praktikum)

Weitere Informationen über die Lehrenden in Stud.IP. mit Seminar maximal 4 Teilnehmer

Modul 02-CHE-MA-WOC1: Homogene Katalyse

Homogeneous Catalysis

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Wahlpflichtbereich II	keine

Lerninhalte:

Vorlesung: Organokatalyse

- Katalytisch enantioselektive Reaktionen unter Verwendung chiraler organischer Moleküle, insbesondere:
- · Wasserstoffbrücken-vermittelte Reaktionen
- · Phasentransferkatalyse
- Imin/Enamin-vermittelte Transformationen
- Diskussion ergänzender Metall-katalysierter Reaktionen

Vorlesung: Moderne Aromatenchemie

- Nucleophile aromatische Subststitutionen
- · Chemie der Arine
- Übergangsmetall-vermittelte C-H-Aktivierung

Übergangsmetall-vermittelte de novo Synthesen von (Hetero)aromaten

Lernergebnisse / Kompetenzen:

Die Studierenden sollen in diesem Modul einen Überblick über moderne katalytisch geführte Reaktionsmethoden gewinnen. Dabei soll insbesondere ein Überblick über die Katalyse mit kleinen organischen Molekülen (Organokatalysatoren) vermittelt werden. Komplementär dazu sollen die Studierenden in die Lage versetzt werden (hetero)aromatische Verbindungen über moderne Übergangsmetall-vermittelte Reaktionen aufbauen und funktionalisieren zu können.

Workloadberechnung:

84 h Vor- und Nachbereitung

40 h Prüfungsvorbereitung

56 h SWS / Präsenzzeit / Arbeitsstunden

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n): Deutsch	Modulverantwortliche(r): Prof. Dr. Boris J. Nachtsheim
Häufigkeit: Sommersemester, jährlich	Dauer: 1 Semester
Modul gültig seit / Modul gültig bis: WiSe 18/19 / -	ECTS-Punkte / Arbeitsaufwand: 6 / 180 Stunden

Modulprüfungen

Modulprüfung: Modulprüfung Homogen	ne Katalyse
---	-------------

Prüfungstyp: Modulprüfung

Prüfungsform: Mündliche Prüfung, Einzelprüfung	Die Prüfung ist unbenotet? nein
Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen: 1 / - / -	
Prüfungssprache(n):	
Deutsch	

Lehrveranstaltung: Organokatalyse	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
2	Prof. Dr. Boris J. Nachtsheim
Unterrichtsprache(n):	'
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Modulprüfung Homogene Katalyse
Zugeordnete Lehrveranstaltungen	'
Organokatalyse (Vorlesung)	
Weitere Informationen über die Lehrenden in Stud.IP.	

Lehrveranstaltung: Moderne Aromatenchemie	
Häufigkeit: Sommersemester, jährlich	Gibt es parallele Veranstaltungen? nein
SWS : 2	Dozent*in: Prof. Dr. Boris J. Nachtsheim
Unterrichtsprache(n): Deutsch	
Lehrform(en): Vorlesung	Zugeordnete Modulprüfung: Modulprüfung Homogene Katalyse

Modul 02-CHE-MA-WOC3: Naturstoffchemie

Natural Products Chemistry

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Wahlpflichtbereich II	keine

Lerninhalte:

Vorlesung: Naturstoffsynthese

- Gründe und Motive für die Synthese von Naturstoffen
- · Besprechung ausgewählter Naturstoffsynthesen

Vorlesung: Naturstoffe – Biosynthese, Wirkung, chemische Ökologie

- Biosynthese von Polyketiden, Terpenen und Alkaloiden
- Wirkungen von Naturstoffen (Toxine, Bakterizide, Fungizide, Insektizide, Herbizide)
- Bedeutung von Naturstoffen für die Wirkstoffentwicklung
- Bedeutung von Sekundärstoffen für den Produzenten (chemische Ökologie, chemische Verteidigungsstrategien, chemische Kommunikation)

Lernergebnisse / Kompetenzen:

Die Studierenden sind nach erfolgreicher Teilnahme in der Lage:

- · Synthesestrategien für Naturstoffe nachzuvollziehen und selbst vorzuschlagen
- plausible Biosynthesevorschläge für Polyketide, Terpene und Alkaloide zu erstellen und diese Kenntnisse für biomimetische Synthesen nutzen zu können
- die Bedeutung ausgewählter Naturstoffe für den Produzenten und die Entwicklung von Wirkstoffen zu kennen

Workloadberechnung:

40 h Prüfungsvorbereitung

84 h Vor- und Nachbereitung

56 h SWS / Präsenzzeit / Arbeitsstunden

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul?

Unterrichtsprache(n): Deutsch	Modulverantwortliche(r): Prof. Dr. Peter Spiteller
Häufigkeit: Sommersemester, jährlich	Dauer: 1 Semester
Modul gültig seit / Modul gültig bis: WiSe 18/19 / -	ECTS-Punkte / Arbeitsaufwand: 6 / 180 Stunden

Modulprüfungen

Modulprüfung: Kombinationsprüfung Naturstoffchemie	
Prüfungstyp: Modulprüfung	
Prüfungsform:	Die Prüfung ist unbenotet?
Klausur	nein

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:

2/-/-

Prüfungssprache(n):

Deutsch

Beschreibung:

Klausur 50% und mündl. Prüfung 5 %

Lehrveranstaltungen des Moduls

Lehrveranstaltung: Naturstoffe - Verbin	ndungsklassen, Bedeutung, Wirkung
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
2	Prof. Dr. Peter Spiteller
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Kombinationsprüfung Naturstoffchemie
Zugeordnete Lehrveranstaltungen	'

Zugeordnete Lehrveranstaltungen

Naturstoffe - Verbindungsklassen, Bedeutung, Wirkung (Vorlesung)

Weitere Informationen über die Lehrenden in Stud.IP.

Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
2	Prof. Dr. Peter Spiteller
Unterrichtsprache(n):	
Deutsch	
L - L - C /)	Zugeordnete Modulprüfung:
Lehrform(en):	

Naturstoffsynthese (Vorlesung)

Weitere Informationen über die Lehrenden in Stud.IP.

Modul 02-CHE-MA-WOC4: Vertiefung Makromolekulare Chemie

Special Aspects of Macromolecular Chemistry

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Wahlpflichtbereich II	Grundwissen zur Makromolekularen Chemie,
	z.B. durch erfolgreiche Teilnahme an der
	Lehrveranstaltungen MC im Bachelor Chemie

Lerninhalte:

Makromolekulare Chemie für Fortgeschrittene: Synthese und Eigenschaften von Spezialpolymeren für die Elektronik und andere High-End-Anwendungen, Photo- und Strahlenchemie der Polymere, Membranen, Verkapselung

Supramolekulare Chemie: Grundlagen der intermolekularen Wechselwirkungen, Synthese und Eigenschaften supramolekularer Stoffe, Chemie schwacher Bindungen und deren Einfluss auf polymere Systeme und Formulierungen, durch supramolekulare Prinzipien aufgebaute Polymere Kunststofftechnik: Technische Herstellung von Polymeren, Verarbeitungsmethoden von Thermoplasten und Duromeren, Methoden zur Prüfung und Analyse von Kunststoffen, vom Polymer zum Kunststoff

Lernergebnisse / Kompetenzen:

Die Studierenden sollen mit dem speziellen Verhalten, den Eigenschaften und Verarbeitungstechniken von Polymeren vertraut sein. Dies reicht von der Synthese spezieller Polymere bis hin zum Verständnis der Unterschiede zwischen Labor und Technik, und das Wissen um die Unterschiede zwischen Polymeren und Kunststoffen, sowie der Bedeutung im täglichen Leben. Schwache Bindungen spielen in der supramolekularen Chemie die zentrale Rolle, beeinflussen aber auch das Verhalten von Kunststoffen des täglichen Lebens. Die Zusammenhänge sollen bekannt und verstanden sein. Die Studierenden sollen in der Praxis die speziellen Eigenschaften von Polymeren kennen lernen und die Struktur-Eigenschaftsbeziehungen verstanden haben.

Workloadberechnung:

68 h Prüfungsvorbereitung

56 h SWS / Präsenzzeit / Arbeitsstunden

56 h Vor- und Nachbereitung

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n): Deutsch	Modulverantwortliche(r): Prof. Dr. Andreas Hartwig
Häufigkeit: Sommersemester, jährlich	Dauer: 1 Semester
Modul gültig seit / Modul gültig bis:	ECTS-Punkte / Arbeitsaufwand:
WiSe 18/19 / -	6 / 180 Stunden

Modulprüfungen

Modulprüfung: Modulprüfung Vertiefung Makromolekulare Chemie	
Prüfungstyp: Modulprüfung	

Prüfungsform: Klausur	Die Prüfung ist unbenotet? nein
Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:	
Prüfungssprache(n):	
Deutsch	

Lehrveranstaltungen des Moduls

Weitere Informationen über die Lehrenden in Stud.IP.

Lehrveranstaltung: Polymere für Fortg	eschrittene
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
2	Prof. Dr. Andreas Hartwig
Unterrichtsprache(n):	'
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Modulprüfung Vertiefung Makromolekulare Chemie
Zugeordnete Lehrveranstaltungen	'
Makromolekulare Chemie und suprar (Vorlesung)	molekulare Chemie der Polymere für Fortgeschrittene

Lehrveranstaltung: Kunststofftechnik	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
sws:	Dozent*in:
2	Prof. Dr. Andreas Hartwig
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Modulprüfung Vertiefung Makromolekulare Chemie

Modul 02-CHE-MA-WPC1: Heterogene Katalyse und Oberflächenchemie Catalsis and Surface Chemistry

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:	
Wahlpflichtbereich III	keine	

Lerninhalte:

In dem Modul sollen folgende Themen abgedeckt werden:

Heterogene Katalyse und Oberflächenchemie:

Grundlegende Fragen und Konzepte der heterogenen Katalyse

Typen heterogener Katalysatoren

Katalysatorherstellung und Zielgrößen bei der Herstellung

Verwendung in der Technik: verfahrenstechnische Fragen

Diffusion und Stofftransportlimitierung

Charakterisierung von Poren

Reaktionsmechanismen

Modellkatalyse unter UHV-Bedingungen

Vakuum-und Kryotechnik:

Strömung von Gasen (Strömungsarten, Innere Reibung, Diffusion, Vakuumbereiche)

Vakuumtechnik (Vakuumpumpen, Druckmessverfahren, Materialen, Konzeption von Vakuumanlagen,

Leitwertberechnungen)

Massenspektroskopie

Kryotechnik (Gasverflüssigung, Kryostate)

Sicherheit im Umgang mit Flüssiggasen und Vakuumanlagen

Lernergebnisse / Kompetenzen:

In dem Modul wird ein grundlegendes Verständnis heterogener Katalysatoren und aller dazugehörenden Teilschritte erreicht. Dabei steht das Erlernen der strukturellen und chemischen Komplexität dieser Materialien und Möglichkeiten des mikroskopischen Verständnisses der Vorgänge auf der Katalysatoroberfläche im Vordergrund. Die Studierenden sind in der Lage, auf verschiedenen Skalen das Zusammenwirken der verschiedenen miteinander gekoppelten Teilschritte im Hinblick auf katalytische Aktivität und Selektivität zu beurteilen. Die Studierenden können zudem beurteilen, wie mit Techniken der Ultrahochvakuumtechnologie und der Modellkatalyse katalytische Oberflächenprozesse untersucht werden können.

Im Detail können Studierende

- Zielgrößen bei der Katalysatorherstellung benennen und Einflussmöglichkeiten bei der Strukturgebung beurteilen
- het. Kat. Vorgänge unter Einbeziehung aller Teilprozesse grundsätzlich verstehen und Vorhersagen darüber treffen, wie sich sie strukturellen Eigenschaften eines Katalysators darauf auswirken
- · das Potential modellkatalytischer Studien beurteilen

Vakuumtechnik:

- Grundprinzipien häufiger Druckmesstechniken und Vakuumpumpen darstellen
- Eine Vakuumanlage konzeptionell entwerfen
- Mit Vakuumanlagen und Kryostaten sicher umgehen

Studierende kennen Methoden zur Erzeugung tiefer Temperaturen.

Workloadberechnung:

63 h Vor- und Nachbereitung

87 h SWS / Präsenzzeit / Arbeitsstunden

30 h Prüfungsvorbereitung

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul?

nein

Unterrichtsprache(n):	Modulverantwortliche(r):
Deutsch / Englisch	Prof. Dr. Marcus Bäumer
Häufigkeit:	Dauer:
Sommersemester, jährlich	1 Semester
Modul gültig seit / Modul gültig bis:	ECTS-Punkte / Arbeitsaufwand:
WiSe 18/19 / -	6 / 180 Stunden

Modulprüfungen

Modulprüfung: Kombinationsprüfung Heterogene Katalyse und Oberflächenchemie

Prüfungstyp: Modulprüfung

Prüfungsform: Die Prüfung ist unbenotet?

Referat mit schriftlicher Ausarbeitung neir

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:

2/-/-

Prüfungssprache(n):

Deutsch

Beschreibung:

Präsentation 50% und Praktikumsbericht 50%

Lehrveranstaltungen des Moduls

Lehrveranstaltung: Heterogene Katalyse und Oberflächenchemie		
Häufigkeit:	Gibt es parallele Veranstaltungen?	
Sommersemester, jährlich	nein	
SWS:	Dozent*in:	
2	Prof. Dr. Marcus Bäumer	
Unterrichtsprache(n):		
Deutsch		
Lehrform(en):	Zugeordnete Modulprüfung:	
Vorlesung	Kombinationsprüfung Heterogene Katalyse und	
	Oberflächenchemie	

Zugeordnete Lehrveranstaltungen

Heterogene Katalyse (Vorlesung)

Weitere Informationen über die Lehrenden in Stud.IP. im UFT

Lehrveranstaltung: Vakuum- und Kryote	echnik
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
1	Prof. Dr. Marcus Bäumer
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Kombinationsprüfung Heterogene Katalyse und
	Oberflächenchemie
Zugeordnete Lehrveranstaltungen	
Vakuum- und Kryotechnik (Vorlesung)	
Weitere Informationen über die Lehre	nden in Stud.IP.
Lehrveranstaltung: Übungen und Prakti	ikum zu "Vakuum- und Kryotechnik"
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
014/0	D (*'

Sommersemester, janimen	пеш
SWS:	Dozent*in:
1	Prof. Dr. Marcus Bäumer
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Übung	Kombinationsprüfung Heterogene Katalyse und
Praktikum	Oberflächenchemie
Zugeordnete Lehrveranstaltungen	

Zugeordnete Lehrveranstaltungen

Übungen und Praktikum zu "Vakuum- und Kryotechnik" (Übung)

Weitere Informationen über die Lehrenden in Stud.IP. maximal 10 Teilnehmer

Lehrveranstaltung: Industrieexkursion	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
1	Prof. Dr. Marcus Bäumer
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Exkursion	Kombinationsprüfung Heterogene Katalyse und
	Oberflächenchemie

Modul 02-CHE-MA-WPC2: Elektronen-induzierte Chemie Electroninduced Chemistry

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:	
Wahlpflichtbereich III	keine	

Lerninhalte:

In dem Modul sollen folgende Themen abgedeckt werden:

A) Modulteil Grundlagen Elektronen-induzierter Chemie

Oberflächen und Elektronen (Bedeutung und Wirkung von Elektronen: Beugung und Struktur, Spektroskopie und Zustände, Reaktionen und Modifizierung)

Adsorbate und nanoskopische Molekülschichten (Herstellung monomolekularer Schichten, Prinzip der Selbstorganisation, PVD, Wachstumsformen und ihre Kinetik, Epitaxie, Langmuir-Blodgett-Filme, SAMs, Schicht-nach-Schicht-Abscheidung)

Elektronen-induzierte Elementarprozesse (Mechanismen der Wechselwirkung zwischen Elektronen und Materie, Modellhafte Beschreibung dissoziativer Prozesse, Anregung, Elektronen-anlagerung, Ionisation, Folgereaktionen, Kinetik, Einfluss einer Oberfläche oder eines umgebenden Mediums)

Evolution eines Elektronenstrahls in einem kondensierten Medium (Mittlere freie Weglänge von Elektronen, Eindringtiefe, Erzeugung von Sekundärelektronen, typische Energieverteilung)

Untersuchung Elektronen-induzierter Prozesse (Vakuum, Ober-flächenanalytik, insbesondere TDS, RAIRS, ESD, HREELS, XPS, spezielle Methoden zur Strukturaufklärung nanoskopischer Molekülschichten) Bedeutung elektronen-induzierter Reaktionen (Technische Anwendung von keV- bis MeV- Elektronen, Bedeutung langsamer Elektronen, Plasmen, Lithographie, Oberflächenmodifizierung, FEBID, Astrochemie, Strahlenschäden, Atmosphärenchemie, Elektrochemie)

B) Modulteil Aktuelle Aspekte der Elektronen-induzierten Chemie

Das Seminar vertieft ausgewählte und jährlich wechselnde aktuelle Anwendungsgebiete der Elektroneninduzierten Chemie anhand von Beispielen aus der Originalliteratur, die von den Teilnehmern erarbeitet und präsentiert werden. Darüber hinaus werden die Ergebnisse des Praktikums im Seminar nachbereitet.

C) Modulteil Praktikum Elektronen-induzierte Chemie

Das Praktikum führt ein in die Experimente zur Untersuchung Elektronen-induzierter Reaktionen (Probenpräparation, ESD, TDS, AES, RAIRS).

Lernergebnisse / Kompetenzen:

Studierende sollen nach erfolgreicher Teilnahme

- die Bedeutung der Wechselwirkung von Elektronenstrahlung mit Materie verstehen;
- die physikalischen Grundlagen und Mechanismen Elektronen-induzierter chemischer Reaktionen erläutern können;
- Methoden zur Präparation definierter molekularer Adsorbate und Schichten an Oberflächen kennen und verstehen;
- die Wirkung von Elektronenstrahlung auf Oberflächen, Adsorbate und molekulare Schichten einschätzen können;
- Methoden zur Untersuchung Elektronen-induzierter Reaktionen kennen und verstehen;
- den aktuellen Stand der Forschung zu ausgewählten Anwendungsbereichen Elektronen-induzierter Chemie überblicken.

Workloadberechnung:

84 h SWS / Präsenzzeit / Arbeitsstunden

40 h Prüfungsvorbereitung

56 h Vor- und Nachbereitung

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul?

nein

Unterrichtsprache(n):	Modulverantwortliche(r):
Deutsch / Englisch	Prof. Dr. Petra Swiderek
Häufigkeit:	Dauer:
Sommersemester, jährlich	1 Semester
Modul gültig seit / Modul gültig bis:	ECTS-Punkte / Arbeitsaufwand:
WiSe 18/19 / -	6 / 180 Stunden

Modulprüfungen

Modulprüfung: Kombinationsprüfung Elektronen-induzierte Chemie

Prüfungstyp: Modulprüfung

Prüfungsform: Die Prüfung ist unbenotet?

Siehe Freitext neir

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:

2/-/-

Prüfungssprache(n):

Deutsch

Beschreibung:

mündl. Prüfung 50% und Präsentation 50%

Lehrveranstaltungen des Moduls

Lehrveranstaltung: Grundlagen Elektronen-induzierter Chemie	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
2	Prof. Dr. Petra Swiderek
Unterrichtsprache(n):	'

Deutsch

Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Kombinationsprüfung Elektronen-induzierte Chemie

Zugeordnete Lehrveranstaltungen

Grundlagen Elektronen-induzierter Chemie (Vorlesung)

Weitere Informationen über die Lehrenden in Stud.IP.

Lehrveranstaltung: Aktuelle Aspekte der Elektronen-induzierten Chemie

Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
3	Prof. Dr. Petra Swiderek
	Dr. Jan Bredehöft
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Seminar	Kombinationsprüfung Elektronen-induzierte Chemie
Zugeordnete Lehrveranstaltungen	'

Aktuelle Aspekte der Elektronen-induzierten Chemie (Seminar)

Weitere Informationen über die Lehrenden in Stud.IP.

Lehrveranstaltung: Praktikum Elektron	en-induzierter Chemie
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
1	Prof. Dr. Petra Swiderek
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Praktikum	Kombinationsprüfung Elektronen-induzierte Chemie
Zugeordnete Lehrveranstaltungen	'

Praktikum Elektronen-induzierte Chemie (Seminar)

Weitere Informationen über die Lehrenden in Stud.IP. n.V. NW2 B1117

Modul 02-CHE-MA-WPC3: Einführung in die Technische Chemie Introduction to Technical Chemistry

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Wahlpflichtbereich III	keine

Lerninhalte:

In dem Modul sollen folgende Themen abgedeckt werden:

- · Chemische Reaktionen
- · Reaktionsgleichgewicht und Umsatz
- · Thermodynamik realer Systeme
- · Umsatzraten und Reaktorauslegung
- · Kontinuierliche und diskontinuierliche Reaktoren
- · Reaktor-Design-Gleichungen
- · Reaktor-Kaskaden
- · Beispiele industrieller Reaktoren
- Kostenschätzung
- Makrokinetik
- · Reale Reaktoren
- Verweilzeitverteilung
- Dispersionsmodell
- Zwei-Parameter-Modelle

Im Praktikum wird ein umfangreicher Versuch zum Verweilzeitverhalten verschiedener Reaktoren und erzielbaren Umsätzen (Verseifung eines Esters) durchgeführt.

Im Seminar werden die Ergebnisse aufgearbeitet und mit theoretischen Werten verglichen. Erfahrungen und Probleme werden diskutiert und Inhalte werden nach Anregung durch die Studierenden vertieft.

Lernergebnisse / Kompetenzen:

Studierende sollen nach erfolgreicher Teilnahme an dem Modul in der Lage sein,

- die Besonderheiten beim Übergang von einem labortypischen Batchansatz zum industrietypischen kontinuierlichen Ansatz einschätzen zu können
- das Verweilzeitverhalten verschiedener Reaktoren voraussagen und bestimmen können
- · Vorhersagen treffen zu können, wann welcher chem. Reaktortyp geeignet ist.

Workloadberechnung:

98 h Vor- und Nachbereitung

59 h SWS / Präsenzzeit / Arbeitsstunden

23 h Prüfungsvorbereitung

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n):	Modulverantwortliche(r):
Deutsch / Englisch	Prof. Dr. Marcus Bäumer
112	
Häufigkeit:	Dauer:

Modul gültig seit / Modul gültig bis:	ECTS-Punkte / Arbeitsaufwand:
WiSe 18/19 / -	6 / 180 Stunden

Modulprüfungen

Modulprüfung: Kombinationsprüfung Einführung in die Technische Chemie

Prüfungstyp: Modulprüfung

Prüfungsform:
Siehe Freitext

Die Prüfung ist unbenotet?
nein

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:

2/-/-

Prüfungssprache(n):

Deutsch

Beschreibung:

mündl. Prüfung 50% und Praktikumsbericht 50%

Lehrveranstaltungen des Moduls

Lehrveranstaltung: Technische Reaktionsführung		
Häufigkeit:	Gibt es parallele Veranstaltungen?	
Sommersemester, jährlich	nein	
SWS:	Dozent*in:	
2	Arne Wittstock	
	Prof. Dr. Marcus Bäumer	
Unterrichtsprache(n):		
Deutsch		
Lehrform(en):	Zugeordnete Modulprüfung:	
Vorlesung	Kombinationsprüfung Einführung in die Technische	
	Chemie	

I above a station of Drahilities and Com	vines was Technicahan Deelstienestühmung	
Lehrveranstaltung: Praktikum und Seminar zur Technischen Reaktionsführung		
Häufigkeit:	Gibt es parallele Veranstaltungen?	
Sommersemester, jährlich	nein	
SWS:	Dozent*in:	
2,5	Arne Wittstock	
	Prof. Dr. Marcus Bäumer	
Unterrichtsprache(n):		
Deutsch		
Lehrform(en):	Zugeordnete Modulprüfung:	
Seminar	Kombinationsprüfung Einführung in die Technische	
Praktikum	Chemie	

Modul 02-CHE-MA-WPC4: Herstellung und Charakteristika von Nanopartikeln Synthesis and charaterization of nanoparticles

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:	
Wahlpflichtbereich III	keine	

Lerninhalte:

Im seminaristischen Teil sollen die Studierenden im Eigenstudium wichtige Grundlagen der kolloidchemischen Herstellung von Nanopartikeln erarbeiten und im Rahmen eines Vortrages präsentieren. Kenntnisse zur Charakterisierung, den Eigenschaften und Anwendungen werden in Vorträgen verschiedener Mitglieder der Arbeitsgruppe praxisnah vermittelt. Im praktischen Teil können die Teilnehmer in Absprache diverse Techniken im Batch und im kontinuierlichen Mikroreaktor kennenlernen (Synthese in hochsiedenden organischen Lösungsmitteln, Ethylenglykolmethode, Synthese in wässrigen Lösungen). In Zusammenarbeit mit Mitarbeitern lernen die Teilnehmer wichtige Methoden der Charakterisierung aus den Bereichen Mikroskopie, Spektroskopie und Beugung kennen. Abschließend wird ein Versuch zu den katalytischen Eigenschaften von Nanopartikeln durchgeführt.

Lernergebnisse / Kompetenzen:

Studierende sollen nach Besuch des Moduls

- über grundlegende Kenntnisse der Kolloidchemie verfügen
- Eigenschaften und Anwendungen von Nanopartikeln benennen können
- ausgewählte Methoden der Herstellung metallischer und oxidischer Nanopartikel beherrschen;
- wichtige Charakterisierungsmethoden (TEM, AFM, DLS, XRD) praxisnah kennen und in Einzelfällen anwenden können.

Workloadberechnung:

77 h SWS / Präsenzzeit / Arbeitsstunden

103 h Vor- und Nachbereitung

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n):	Modulverantwortliche(r):
Deutsch	Prof. Dr. Marcus Bäumer
Häufigkeit:	Dauer:
Sommersemester, jährlich	1 Semester
Modul gültig seit / Modul gültig bis: ECTS-Punkte / Arbeitsaufwand:	
WiSe 18/19 / -	6 / 180 Stunden

Modulprüfungen

Modulprüfung: Kombinationsprüfung Herstellung und Charakteristika von Nanopartikeln	
Prüfungstyp: Modulprüfung	
Prüfungsform: Die Prüfung ist unbenotet?	
Siehe Freitext	nein

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:

2/-/-

Prüfungssprache(n): Deutsch	
Beschreibung:	
mündl. Prüfung 50% und Praktikumsbericht 50%	

Lehrveranstaltungen des Moduls

Lehrveranstaltung: Praktikum und Semin	ar "Herstellung und Charakterisierung von Nanopartikeln"
Häufigkeit: Gibt es parallele Veranstaltungen?	
Wintersemester, jährlich	nein
SWS: Dozent*in:	
	Prof. Dr. Marcus Bäumer
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Seminar	Kombinationsprüfung Herstellung und
Praktikum	Charakteristika von Nanopartikeln

Modul 02-CHE-MA-WThC: Computerchemie

Computational Chemistry

Modu	Iarun	penzuor	dniina.
Modu	ıgı up	pcnzuoi	unung.

Wahlpflichtbereich III

Empfohlene inhaltliche Voraussetzungen:

Gute Kenntnisse der Quantenmechanik und der MO-Theorie, wie sie in den Vorlesungen Quantenmechanik (ThC1) und Theorie der chemischen Bindung (ThC2) vermittelt werden, werden empfohlen.

Lerninhalte:

In dem Modul sollen folgende Themen abgedeckt werden:

Einführung in die Computerchemie (Born-Oppenheimer-Näherung, Schrödinger-Gleichung, Potenzialflächen, Charakterisierung von stationären Punkten)

Basissätze

Das Hartree-Fock-Verfahren (Slater-Condon-Regeln, Self-Consistent-Field Verfahren, Roothaan-Hall-Gleichungen, Elektronenkorrelation)

Geometrieoptimierung (Theoretische und praktische Aspekte)

Post-Hartree-Fock-Methoden (Configuration Interaction, Coupled Cluster)

Dichtefunktionaltheorie

Einführung in die dynamische Beschreibung chemischer Prozesse ((ab initio) Molekulardynamik)

Praktische Durchführung quantenchemischer Rechnungen

Schreiben eines wissenschaftlichen Manuskripts

Lernergebnisse / Kompetenzen:

Die Studierenden sollen durch dieses Modul die wichtigsten quantenchemischen Rechenmethoden, die in der heutigen Literatur verwendet werden, kennenlernen. Am Ende des Moduls werden die Studierenden in der Lage sein

- die Vor- und Nachteile der verschiedenen Rechenmethoden einzuschätzen und gegeneinander abzuwägen
- die Verlässlichkeit verschiedener berechneter Größen in der Literatur einzuschätzen
- selbst quantenchemische Rechnungen zu planen, durchzuführen und auszuwerten
- ein wissenschaftliches Manuskript zur Publikation in einer Fachzeitschrift zu schreiben

Workloadberechnung:

124 h Selbstlernstudium

56 h SWS / Präsenzzeit / Arbeitsstunden

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n):	Modulverantwortliche(r):
Deutsch	Prof. Dr. Tim Neudecker

Häufigkeit:	Dauer:
Sommersemester, jährlich	1 Semester
Modul gültig seit / Modul gültig bis:	ECTS-Punkte / Arbeitsaufwand:
SoSe 22 / -	6 / 180 Stunden

Modulprüfungen

Modulprüfung: Computerchemie Prüfungstyp: Kombinationsprüfung Prüfungsform: Die Prüfung ist unbenotet? Siehe Freitext nein Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen: 2/-/-Prüfungssprache(n): Deutsch Beschreibung: mündl. Prüfung 50% und Praktikumsbericht 50%

Lehrveranstaltungen des Moduls

Lehrveranstaltung: Computerchemie	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
2	Prof. Dr. Tim Neudecker
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Computerchemie
Zugeordnete Lehrveranstaltungen	1

Computerchemie (Vorlesung)

Di. 09:00 - 13:00 Uhr, NW2 B1158 Weitere Informationen über die Lehrenden in Stud.IP. maximal 12 Teilnehmer

Lehrveranstaltung: Praktikum Computerchemie	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
2	Prof. Dr. Tim Neudecker
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Praktikum	

Zugeordnete Lehrveranstaltungen

Computerchemie (Vorlesung)

Di. 09:00 - 13:00 Uhr, NW2 B1158 Weitere Informationen über die Lehrenden in Stud.IP. maximal 12 Teilnehmer

Modul 02-CHE-MA-WCSS: Chemometrie und spezielle Spurenanalytik Chemometry and advanced trace analysis

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Wahlpflichtbereich IV	Grundlagen der analytischen Chemie.
	Rechenkenntnisse (RM 1 und 2 oder vergleichbar)
	werden empfohlen.
	Wünschenswert sind Spurenanalytik, Spektroskopie
	und Chromatografie aus dem BSc-Studiengang oder
	vergleichbar.

Lerninhalte:

- Grundlagen der statistischen Behandlung chemisch-analytischer Daten.
- Methoden der Datenreduktion.
- Umsetzung einer Fragestellung in eine a priori Festlegung analytischer Kenngrößen (experimental design).
- Kriterien der Auswahl einer chemisch-analytischen Methode.
- Bedeutung von Störungen in chemischen Analysen und Blank-Problematik.
- Verfahren zur Standardisierung und zur Qualitätssicherung.
- · Beurteilung von Analyseresultaten, auch im Vergleich mit Literaturdaten.

In der praktischen Anwendung werden Beispiel-Datensätze unterschiedlicher Schwierigkeitsgrade bearbeitet.

- Univariate Datensätze geringen Umfangs
- Multivariate Datensätze aus modernen Analysenverfahren
- Komplexe Multi-Element-Datensätze (u.a. ICPMS-Daten)
- Multi-Isotopen-Datensätze
- Zeitreihen
- Fallbeispiele aus der (marinen) Umweltanalytik

Lernergebnisse / Kompetenzen:

Die Studierenden sind nach erfolgreicher Teilnahme in der Lage:

- eine der Fragestellung inhaltlich angemessene analytische Strategie zu entwickeln zu können,
- chemische Analysedaten hinsichtlich ihrer Relevanz für die jeweilige Fragestellung zu beurteilen, auch bei großen Datenmengen,
- analytische Methoden sinnvoll miteinander vergleichen zu können,
- die erhobenen Resultate im Kontext der Fachliteratur zu bewerten,
- wissenschaftliche Beobachtungen und Messungen auch in nachvollziehbaren mathematischen Ausdrücken darstellen zu können,
- die zuvor genannten Ziele strukturiert, belastbar und adressatengerecht mündlich (in der Übung) und schriftlich (in der Hausarbeit) umzusetzen.

Workloadberechnung:

56 h SWS / Präsenzzeit / Arbeitsstunden

124 h Vor- und Nachbereitung

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul?

nein

Unterrichtsprache(n): Deutsch	Modulverantwortliche(r): Dr. Uwe Schüßler
Häufigkeit: Sommersemester, jährlich	Dauer: 1 Semester
Modul gültig seit / Modul gültig bis: WiSe 18/19 / -	ECTS-Punkte / Arbeitsaufwand: 6 / 180 Stunden

Modulprüfungen

Modulprüfung: Kombinationsprüfung Chemometrie und spezielle Spurenanalytik

Prüfungstyp: Modulprüfung

Prüfungsform:

Referat mit schriftlicher Ausarbeitung

Die Prüfung ist unbenotet?

nein

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:

2/-/-

Prüfungssprache(n):

Deutsch

Beschreibung:

Vortrag (50%) + mündliche Prüfung (50%)

Auf Wunsch der Studierenden können die 2 PL durch eine einzige PL in Form einer Hausarbeit (100%) ersetzt werden.

Lehrveranstaltungen des Moduls

Lehrveranstaltung: Chemometrie	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
3	Dr. Uwe Schüßler
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Kombinationsprüfung Chemometrie und spezielle
	Spurenanalytik

Lehrveranstaltung: Übungen zu "Chemometrie"		
Häufigkeit:	Gibt es parallele Veranstaltungen?	
Sommersemester, jährlich	nein	
SWS:	Dozent*in:	
1	Dr. Uwe Schüßler	
Unterrichtsprache(n):	-	
Deutsch		

Lehrform(en):	Zugeordnete Modulprüfung:
Übung	Kombinationsprüfung Chemometrie und spezielle
	Spurenanalytik

Modul 02-CHE-MA-WDAT: Verarbeitung und Darstellung Chemischer Daten Data Processing and Plotting in Chemistry

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Wahlpflichtbereich IV	Grundkenntnisse in der Interpretation von Spektren
	(beispielsweise IR, NMR) sind wünschenswert.
	Es handelt sich um eine Einführungsveranstaltung,
	daher sind keine Vorkenntnisse in der
	Programmierung oder elektronischen
	Datenverarbeitung nötig.

Lerninhalte:

Das Modul beinhaltet ein Seminar und einen Programmierkurs, in dem die folgenden Inhalte vermittelt werden sollen:

- · Grundlagen der Python-Programmierung
- · Chemische Datenbanken
- Einlesen experimenteller Daten aus der organischen, anorganischen und physikalischen Chemie
- Arbeiten mit großen Datenmengen
- Datenverarbeitung (Linearisierung, Normierung)
- Datentypen
- Visualisierung mit Matplotlib (Bar plots, scatter plots, line plots)
- Grafische Darstellung von experimentellen Daten (z.B. IR Spektren, XRD Patterns, NMR-Spektren, quantenchemische Rechnungen)

Lernergebnisse / Kompetenzen:

Die Studierenden lernen den Nutzen von computergestützter Datenverarbeitung im chemischen Kontext kennen und lernen die Grundzüge der Python-Programmierung. Darüber hinaus lernen die Studierenden, größere Mengen an Forschungsergebnissen auszuwerten und mithilfe des Python-Pakets Matplotlib ansprechend und in Publikationsqualität grafisch darzustellen.

Die Studierenden erwerben Kompetenzen über den reinen Nutzen der Darstellung chemischer Experimente hinaus durch das Erlernen der Programmiersprache Python.

Workloadberechnung:

124 h Selbstlernstudium

56 h SWS / Präsenzzeit / Arbeitsstunden

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n):	Modulverantwortliche(r):
Deutsch / Englisch	Prof. Dr. Wilke Dononelli
Häufigkeit: Sommersemester, jährlich	Dauer: 1 Semester
Modul gültig seit / Modul gültig bis: SoSe 22 / -	ECTS-Punkte / Arbeitsaufwand: 6 / 180 Stunden

Modulprüfungen

Modulprüfung: Verarbeitung und Darstellung Chemischer Daten

Prüfungstyp: Modulprüfung

Prüfungsform: Die Prüfung ist unbenotet?

Siehe Freitext nei

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:

2/-/-

Prüfungssprache(n):

Deutsch

Beschreibung:

Hausarbeit 50% und Programmieraufgabe 50%, gemäß Anlage 1.2b der Digitalprüfungsordnung

Lehrveranstaltungen des Moduls

Lehrveranstaltung: Verarbeitung und Darstellung chemischer Daten	
Häufigkeit: Gibt es parallele Veranstaltungen?	
Sommersemester, jährlich	nein
SWS:	Dozent*in:
2	Prof. Dr. Wilke Dononelli

Unterrichtsprache(n):

Deutsch

Lehrform(en):Zugeordnete Modulprüfung:SeminarVerarbeitung und Darstellung Chemischer Daten

Zugeordnete Lehrveranstaltungen

Verarbeitung und Darstellung chemischer Daten (Seminar)

Seminar + Praktikum Weitere Informationen über die Lehrenden in StudIP.

Lehrveranstaltung: Praktikum Verarbeitung und Darstellung chemischer Daten	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
sws:	Dozent*in:
2	Prof. Dr. Wilke Dononelli
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Praktikum	Verarbeitung und Darstellung Chemischer Daten
	'

Zugeordnete Lehrveranstaltungen

Verarbeitung und Darstellung chemischer Daten (Seminar)

Seminar + Praktikum Weitere Informationen über die Lehrenden in StudIP.

Modul 02-CHE-MA-WMC2	2: Chemie des Ozeans
Ocean chemistry	

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Wahlpflichtbereich IV	Grundlagen der Meereschemie aus dem B.Sc
	Programm (Modul MeC1), grundlegende chemische
	Prinzipien (Allgemeine Chemie) werden empfohlen.

Lerninhalte:

- · Meereskunde und ozeanische Chemie als Teil der Erdsystem-Wissenschaft
- Eigenschaften von Wasser und Meerwasser, Teil 2: Wechselwirkungen der gelösten Stoffe, kollogative Eigenschaften von Lösungen, Erweiterungen der erweiterten Debye-Hückel-Theorie
- Ursachen der Ozeanzirkulation: physikalischer und chemischer Antrieb, hydrologischer Kreislauf, Konvektion, Strömungs-induzierte Vertikaltransporte von Meerwasser
- Salinität: gelöste Stoffe und Dichte von Meerwasser
- Thermodynamische Zustandsgleichung für Meerwasser
- Chemische Zustandsform von Inhaltsstoffen (Speziation), Bioverfügbarkeit
- Die besondere Rolle von Eisen im Ozean
- · Gase im Ozean: Vorkommen, Austausch-Dynamik, wissenschaftliche Anwendungen
- Die Meeres-Oberfläche: sea surface microlayer
- · Redox-Chemie im Meer: Auf- und Abbau von organischem Material
- Spurenelemente
- Säure-Base-Chemie und das Carbonat-System (Teil 2)
- Input und Output über die ozeanischen Grenzflächen: fluviatil, atmosphärisch und hydrothermal
- Marine Sedimente als chemisches Klima-Archiv (geological record)
- · Organische Chemie im Ozean
- Marine Biogeochemie: Kohlenstoff-Kreislauf und Kohlenstoff-Pumpen, N/P/S -Kreisläufe
- Massen-Bilanzen: Box- und Transport-Reaktions-Modelle
- Tracer für chemische Prozesse im Meer: Biomarker sowie stabile und radioaktive Isotope
- Anthropogene Einflüsse und Meeresverschmutzung
- Klima-Veränderung und Globale Erwärmung, Ozean-Versauerung
- Der Ozean und die Sustainable Development Goals (SDGs) der Vereinten Nationen

In dem Veranstaltungsteil **Übung & Seminar** werden die in der Vorlesung behandelten Inhalte wiederholt und vertieft sowie durch Rechenbeispiele ergänzt. Auch können die Studierenden in Kleingruppen über ausgewählte meereschemische Fragestellungen referieren.

Lernergebnisse / Kompetenzen:

Studierende...

- besitzen vertiefte Kenntnisse zu den chemischen Bedingungen im System "Ozean" sowie zum physikalischen Antrieb und biologischen Grundlagen,
- können begründen, warum der Ozean als biogeochemisches Gesamtsystem betrachtet werden muss,
- können die räumlichen Verteilungen von verschiedener Meerwasser-Inhaltsstoffen im Kontext physikalischer, biologischer und chemischer Vorgänge erklären,
- können die Besonderheiten mariner chemischer Reaktionen im Milieu hoher Ionenstärken sachgerecht adressieren,
- können hydrografische und biogeochemische Messdaten deuten und Vertikalprofile und Isolinien-Diagramme interpretieren,
- sind in der Lage, bereits bekannte, grundlegende chemischer Prinzipien von einfachen Laborbedingungen auf das komplexe System Ozean zu übertragen (Modellbildung),
- können sich in einem hochgradig interdisziplinären und komplexen System inhaltlich orientieren und Lösungsansätze für ausgewählte Probleme entwickeln,
- sind in der Lage, Ungleichgewichts-Zustände im raum-zeitlich variablen System Ozean zu erkennen und zu deuten,
- · können einfache quantitative Abschätzungen zu Stofftransporten im Meer durchführen,
- können für ausgewählte Gegebenheiten unterschiedliche Analyse-Daten hinsichtlich ihrer Aussagekraft vergleichend beurteilen,
- haben aufgrund der Diskussionsphasen und Gruppenarbeit verbesserte Teamarbeits- und Diskurs-Fähigkeiten.

Workloadberechnung:

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n): Deutsch / Englisch	Modulverantwortliche(r): Dr. Uwe Schüßler
Häufigkeit: Sommersemester, jährlich	Dauer: 1 Semester
Modul gültig seit / Modul gültig bis: SoSe 22 / -	ECTS-Punkte / Arbeitsaufwand: 6 / 180 Stunden

Modulprüfungen

Modulprüfung: Chemie des Ozeans	
Prüfungstyp: Modulprüfung	
Prüfungsform:	Die Prüfung ist unbenotet?
Bekanntgabe zu Beginn des Semesters	nein
Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:	
1/-/-	

Prüfungssprache(n):

Deutsch

Beschreibung:

Hausarbeit ODER Mündliche Prüfung (Einzelprüfung) ODER Gruppenprüfung, mündlich.

Lehrveranstaltungen des Moduls

Lehrveranstaltung: Chemie des Ozeans	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
3	Dr. Uwe Schüßler
	Prof. Dr. Tilmann Harder
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Chemie des Ozeans
Zugoordnoto Lohrvoranstaltungan	

Zugeordnete Lehrveranstaltungen

Chemie des Ozeans (Vorlesung)

Die Veranstaltung ist in Präsenz geplant. Weitere Informationen über die Lehrenden in StudIP.

Lehrveranstaltung: Seminar und Übung Chemie des Ozeans	
Häufigkeit:	Gibt es parallele Veranstaltungen?
Sommersemester, jährlich	nein
SWS:	Dozent*in:
2	Dr. Uwe Schüßler
	Prof. Dr. Tilmann Harder
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Übung	Chemie des Ozeans
Seminar	

Zugeordnete Lehrveranstaltungen

Übung zu Chemie des Ozeans (Übung)

Die Veranstaltung ist in Präsenz geplant. Weitere Informationen über die Lehrenden in StudIP.

Modul 02-CHE-MA-WMED: Medizinische Chemie Medical Chemistry

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Wahlpflichtbereich IV	Gute Kenntnisse der Organischen Chemie und
	Biochemie

Lerninhalte:

Vorlesung:

In der Vorlesung werden die Grundlagen der Medizinischen Chemie besprochen. Sowohl die geschichtliche Entwicklung, als auch aktuelle Beispiele werden vorgestellt. Prinzipien der Arzneimittelentwicklung, Synthese und Isolierung werden an ausgewählten Substanzen und Krankheitsbildern erläutert. Dabei erfolgt u.a. die Vorstellung modernster Ansätze zur Wirkstofffindung. Hierzu gehören die folgenden Schwerpunkte:

- · Hochdurchsatz-Screeningsysteme,
- · Molecular Modeling,
- Struktur-Wirkungsanalysen,
- · Pharmakokinetik,
- · Metabolismus,
- Toxizität

In den Übungen werden die in der Vorlesung besprochenen Aspekte an Beispielen wiederholt und damit vertieft.

Lernergebnisse / Kompetenzen:

In dem Modul sollen die wichtigsten Konzepte und Zusammenhänge der modernen Medizinischen Chemie erlernt werden. Hierzu zählt das Verständnis für die Entwicklung, Wirkstofffindung, Wirkung und Qualität von Arzneistoffen in der Grundlagenforschung und der medizinischen Anwendung. Grundlegende Kenntnisse in den Bereichen pharmakophore Strukturelemente Molecular-Modeling, Struktur-Wirkungs-Beziehungen, Pharmakokinetik und Metabolismus sollen von den Studierenden erworben werden.

Workloadberechnung:

124 h Selbstlernstudium

56 h SWS / Präsenzzeit / Arbeitsstunden

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n):	Modulverantwortliche(r):
Deutsch / Englisch	Dr. Markus Plaumann
Häufigkeit:	Dauer:
Sommersemester, jährlich	1 Semester
Modul gültig seit / Modul gültig bis:	ECTS-Punkte / Arbeitsaufwand:
SoSe 22 / -	6 / 180 Stunden

Modulprüfungen

Modulprüfung: Medizinische Chemie Prüfungstyp: Modulprüfung Prüfungsform: Die Prüfung ist unbenotet? Klausur nein Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen: 1/-/-

Prüfungssprache(n):

Deutsch

Lehrveranstaltungen des Moduls

Lehrveranstaltung: Medizinische Chemie	
Häufigkeit: Gibt es parallele Veranstaltungen?	
Sommersemester, jährlich	nein
SWS:	Dozent*in:
3	Dr. Markus Plaumann
Unterrichtsprache(n):	
Deutsch	
Lehrform(en): Zugeordnete Modulprüfung:	
Vorlesung	Medizinische Chemie

Zugeordnete Lehrveranstaltungen

Medizinische Chemie (Vorlesung)

Weitere Informationen über die Lehrenden in Stud.IP.

Lehrveranstaltung: Übungen Medizinische Chemie		
Häufigkeit:	Gibt es parallele Veranstaltungen?	
Sommersemester, jährlich	nein	
SWS:	Dozent*in:	
1	Dr. Markus Plaumann	
Unterrichtsprache(n):		
Deutsch		
Lehrform(en):	Zugeordnete Modulprüfung:	
Übung	Medizinische Chemie	

Modul 02-CHE-MA-WSOV: Strukturaufklärung organischer Verbindungen Structure Elucidation of Organic Compounds

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:	
Wahlpflichtbereich IV	keine	

Lerninhalte:

Vorlesung:

- Einführung die Messung von NMR-Spektren (1D-und 2D-NMR-Experimente) und von Massenspektren
- Interpretation von NMR-und Massenspektren
- · Strukturaufklärung

Praktikum:

- · Aufnahme von NMR-und Massenspektren
- Spektreninterpretation und Strukturaufklärung

Lernergebnisse / Kompetenzen:

Die Studenten sind nach Beendigung des Moduls in der Lage, auch komplexere Strukturen organischer Moleküle, z. B. die Strukturen von Naturstoffen oder von Pharmazeutika, aufzuklären. Sie können die dazu notwendigen Messungen an NMR-und Massenspektrometern selbst durchführen und die Spektren interpretieren.

Workloadberechnung:

56 h SWS / Präsenzzeit / Arbeitsstunden

40 h Prüfungsvorbereitung

48 h Vor- und Nachbereitung

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n):	Modulverantwortliche(r):
Deutsch	Prof. Dr. Peter Spiteller
Häufigkeit:	Dauer:
Sommersemester, jährlich	1 Semester
Modul gültig seit / Modul gültig bis:	ECTS-Punkte / Arbeitsaufwand:
WiSe 18/19 / -	6 / 180 Stunden

Modulprüfungen

Modulprüfung: Modulprüfung Strukturaufklärung organischer Verbindungen	
Prüfungstyp: Modulprüfung	
Prüfungsform: Die Prüfung ist unbenotet?	
Bekanntgabe zu Beginn des Semesters	nein
Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:	

1/-/-

Prüfungssprache(n): Deutsch	
Beschreibung:	
Klausur oder mündl. Prüfung oder Praktikumsbericht	

Lehrveranstaltungen des Moduls

Lehrveranstaltung: Strukturaufklärung organischer Verbindungen	
Häufigkeit: Gibt es parallele Veranstaltungen?	
Sommersemester, jährlich	nein
SWS:	Dozent*in:
2	Prof. Dr. Peter Spiteller
	Dr. Markus Plaumann
Unterrichtsprache(n):	
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Vorlesung	Modulprüfung Strukturaufklärung organischer
	Verbindungen

Zugeordnete Lehrveranstaltungen

Strukturaufklärung organischer Verbindungen (Vorlesung)

Weitere Informationen über die Lehrenden in Stud.IP. Blockveranstaltung n.V.

Lehrveranstaltung: Praktikum zur Strukturaufklärung organischer Verbindungen	
Häufigkeit: Gibt es parallele Veranstaltungen?	
Sommersemester, jährlich	nein
SWS: Dozent*in:	
2	Prof. Dr. Peter Spiteller
	Dr. Markus Plaumann
Unterrichtsprache(n):	,
Deutsch	
Lehrform(en):	Zugeordnete Modulprüfung:
Praktikum	Modulprüfung Strukturaufklärung organischer
	Verbindungen

Zugeordnete Lehrveranstaltungen

Praktikum zur Strukturaufklärung organischer Verbindungen (Praktikum)

Weitere Informationen über die Lehrenden in Stud.IP. Blockveranstaltung maximal 6 Teilnehmer

Modul 05-GW-MA-MCM-SO: Solic State Spectroscopy

Solic State Spectroscopy

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:	
Wahlpflichtbereich IV	None	

Lerninhalte:

After attending the course, the participants should have skills on:

- (I) to know and properly use basic terminology of solid state spectroscopy and its applications
- (II) to know how to correlate the spectroscopic data as independent/complementary information with the corresponding bulk analysis such as X-ray/neutron elastic scatterings

to know and properly use basic terminology of solid state spectroscopy:

- otical spectroscopy and its applications
- resonance spectroscopy and its applications
- · neutron spectroscopy and its applications
- X-ray spectroscopy and its applications
- to correlate spectroscopic data as independent/complementary information with the corresponding bulk structure analysis and properties

Lernergebnisse / Kompetenzen:

Basics of spectroscopy in the following fields:

Raman spectroscopy,

Infrared spectroscopy,

UV-Vis spectroscopy,

Solid state NMR,

quasi-elastic and inelastic neutron spectroscopy,

X-ray and electron spectroscopy (Resonant Inelastic X-ray scattering, Extended X-ray Absorption Fine Structure, and Electron Energy Loss Spectroscopy),

Practical (Raman, FTIR and UV-Vis)

Workloadberechnung:

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n):	Modulverantwortliche(r):
Englisch	Dr. rer. nat. habil. Mohammad Mangir Murshed
Häufigkeit:	Dauer:
Sommersemester, jährlich	1 Semester
Modul gültig seit / Modul gültig bis:	ECTS-Punkte / Arbeitsaufwand:
WiSe 23/24 / -	6 / 180 Stunden

Modulprüfungen

Modulprüfung: Kombinationsprüfung MCM-SO Solic State Spectroscopy

Prüfungstyp: Kombinationsprüfung

Prüfungsform: Bekanntgabe zu Beginn des Semesters	Die Prüfung ist unbenotet?	
Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen: 2 / - / -		
Prüfungssprache(n): Englisch		
Beschreibung: 50 % written exam 50 % internship report		
Lehrveranstaltungen des Moduls		
Lehrveranstaltung: Lecture		
Häufigkeit: Sommersemester, jährlich	Gibt es parallele Veranstaltungen? nein	
SWS : 2	Dozent*in:	
Unterrichtsprache(n): Englisch		
Literatur: Hans Kuzmany: Solid-State Spectroscopy: An Introduction (Springer, Heidelberg, 2nd Edition, 2009) Norman B. Colthup, Lawrence H. Daly, Stephen E. Wiberley: Introduction to Raman and Infrared Spectroscopy (Academic Press, San Diego, 1990) Heinz-Helmut Perkampus: UV-VIS Spectroscopy and Its Applications (Springer, Heidelberg1992) Melinda J. Duer: Introduction to Solid-State NMR Spectroscopy (Blackwell, Oxford, 2005) Françoise Hippert, Erik Geissler, Jean Louis Hodeau, Eddy Lelièvre-Berna, Jean-René Regnard: Neutron and X-ray Spectroscopy (Springer, Berlin, 2006) ?		
Lehrform(en): Vorlesung	Zugeordnete Modulprüfung: Kombinationsprüfung MCM-SO Solic State Spectroscopy	
Zugeordnete Lehrveranstaltungen Festkörperspektroskopie (Vorlesung) Weitere Informationen über die Lehrenden in Stud.IP. n.V.		
Lehrveranstaltung: Practical		
Häufigkeit: Sommersemester, jährlich	Gibt es parallele Veranstaltungen? nein	
SWS : 2	Dozent*in:	
Unterrichtsprache(n): Englisch		
Literatur:		

Hans Kuzmany: Solid-State Spectroscopy: An Introduction (Springer, Heidelberg, 2nd Edition, 2009)

Norman B. Colthup, Lawrence H. Daly, Stephen E. Wiberley: Introduction to Raman and Infrared Spectroscopy (Academic Press, San Diego, 1990)

Heinz-Helmut Perkampus: UV-VIS Spectroscopy and Its Applications (Springer, Heidelberg1992)

Melinda J. Duer: Introduction to Solid-State NMR Spectroscopy (Blackwell, Oxford, 2005)

Françoise Hippert, Erik Geissler, Jean Louis Hodeau, Eddy Lelièvre-Berna, Jean-René Regnard: Neutron and X-ray Spectroscopy (Springer, Berlin, 2006)

Lehrform(en):	Zugeordnete Modulprüfung:
Praktikum	

Zugeordnete Lehrveranstaltungen

Festkörperspektroskopie (Praktikum)

Weitere Informationen über die Lehrenden in Stud.IP.

Modul 02-CHE-MA-0-CHE: Ergänzende Veranstaltungen im Master Chemie Ergänzende Veranstaltungen im Master Chemie

Modulgruppenzuordnung:	Empfohlene inhaltliche Voraussetzungen:
Ergänzende Veranstaltungen	keine

Lerninhalte:

Lernergebnisse / Kompetenzen:

Workloadberechnung:

Bestehen Auswahlmöglichkeiten von Lehrveranstaltungen im Modul? nein

Unterrichtsprache(n): Deutsch	Modulverantwortliche(r): N.N.
Häufigkeit: (je nach Kapazität) WiSe oder SoSe	Dauer: 1 Semester
Modul gültig seit / Modul gültig bis: WiSe 23/24 / -	ECTS-Punkte / Arbeitsaufwand: 0 / 0 Stunden

Dieses Modul ist unbenotet!

Modulprüfungen

Modulprüfung: Ohne Prüfung oder mit Studienleistung

Prüfungstyp: Modulprüfung

Prüfungsform:Die Prüfung ist unbenotet?Siehe Freitextja

Anzahl Prüfungsleistungen / Studienleistungen / Prüfungsvorleistungen:

-/1/-

Prüfungssprache(n):

Deutsch / Englisch

Lehrveranstaltungen des Moduls

Lehrveranstaltung: Sicherheits- und Brandschutzunterweisung		
Häufigkeit:	Gibt es parallele Veranstaltungen?	
(je nach Kapazität) WiSe oder SoSe	nein	
SWS:	Dozent*in:	
	N. N.	
Unterrichtsprache(n):		
Deutsch		

Lehrform(en):	Zugeordnete Modulprüfung:	
Vorlesung	Ohne Prüfung oder mit Studienleistung	
Übung		
Lehrveranstaltung: Ergänzende Veranstaltungen im Master Chemie		
Häufigkeit:	Gibt es parallele Veranstaltungen?	
(je nach Kapazität) WiSe oder SoSe	nein	
SWS:	Dozent*in:	
	N. N.	
Unterrichtsprache(n):		
Englisch		
Lehrform(en):	Zugeordnete Modulprüfung:	
Vorlesung	Ohne Prüfung oder mit Studienleistung	
Übung		
Seminar		
Betreute Selbsstudieneinheit		
Zugeordnete Lehrveranstaltungen		
Chemisches Kolloquium		