
The Power of Migration in Online Machine Minimization∗

Lin Chen
Magyar Tudományos

Akadémia (MTA SZTAKI)
Budapest, Hungary

chenlin198662@gmail.com

Nicole Megow
Technische Universität München

Zentrum Mathematik
Garching, Germany

nmegow@ma.tum.de

Kevin Schewior
Technische Universität München

Zentrum Mathematik
Garching, Germany

schewior@ma.tum.de

ABSTRACT
In this paper we investigate the power of migration in online
scheduling on multiple parallel machines. The problem is to
schedule preemptable jobs with release dates and deadlines
on a minimum number of machines. We show that migra-
tion, that is, allowing that a preempted job is continued on
a different machine, has a huge impact on the performance
of a schedule. More precisely, let m be the number of ma-
chines required by a migratory solution; then the increase
in the number of machines when disallowing migration is
unbounded in m. This complements and strongly contrasts
previous results on variants of this problem. In both the of-
fline variant and a model allowing extra speed, the power of
migration is limited as the increase of number of machines
and speed, respectively, can be bounded by a small constant.

In this paper, we also derive the first non-trivial bounds on
the competitive ratio for non-migratory online scheduling to
minimize the number of machines without extra speed. We
show that in general no online algorithm can achieve a com-
petitive ratio of f(m), for any function f , and give a lower
bound of Ω(logn). For agreeable instances and instances
with “loose” jobs, we give O(1)-competitive algorithms and,
for laminar instances, we derive an O(logm)-competitive al-
gorithm.

1. INTRODUCTION
It is a central problem in operating real-time systems to

schedule preemptable jobs that arrive online over time with
hard deadlines on multiple identical processors. When a job
is preempted, it can resume processing at any time later. A
schedule is migratory if a preempted job may continue pro-
cessing on a different machine, whereas in a non-migratory
schedule each job is processed by exactly one machine. In
practice, non-migratory schedules are highly favored because

∗This research was supported by the German Science Foun-
dation (DFG) under contract ME 3825/1. The third au-
thor was supported by the DFG within the research training
group ‘Methods for Discrete Structures’ (GRK 1408).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPAA ’16, July 11-13, 2016, Pacific Grove, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4210-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2935764.2935786

migration may cause a significant overhead in communica-
tion and synchronization and it increases the risk of cache-
failures. On the other hand, migratory schedules may be
easier to design and have a better performance.

In this paper we investigate the power of migration in on-
line scheduling with the objective of minimizing the number
of machines. We show that migration has a huge impact on
the performance of a schedule. More precisely, we construct
instances with n jobs which can be processed by a migra-
tory offline schedule on m machines, while any online non-
migratory schedule requires at least max{Ω(logn), f(m)}
machines for any function f . Informally speaking, preempt-
ing jobs is not worth it if we do not allow migration. Indeed,
if migration is allowed then there is an online algorithm that
finds a schedule on O(m logm) machines [4], while otherwise
not even an exponential number of machines (in m) is suffi-
cient.

Our result complements and strongly contrasts previous
results on the offline variant of our problem and on on-
line scheduling with extra speed. Indeed, for those prob-
lems it has been shown that migration is actually of limited
power [3, 7]; more details are given below. Our result also
settles an open question raised in [3].

Leveraging the result on the offline variant of our prob-
lem [7], our lower-bound construction can be used to show
the same bounds also on the competitive ratio of online
non-migratory scheduling, that is, comparing an online non-
migratory schedule to the optimal non-migratory schedule.
In fact, these bounds are the first non-trivial bounds on
the competitive ratio for online non-migratory scheduling to
minimize the number of machines.

For relevant special cases of the problem, we show that the
power of migration is much weaker. We derive an O(logm)-
competitive non-migratory algorithm for instances with lam-
inar time windows and even O(1)-competitive algorithms for
instances with agreeable time windows or “loose” jobs with
a processing time being at most a constant fraction of the
time window.

Further related results.
The online machine minimization problem under free mi-

gration has been investigated extensively by Phillips et
al. [10]. For a natural greedy algorithm called Least Lax-
ity First (LLF), they show a competitive ratio of O(log ∆)
whereas the even simpler and classic Earliest Deadline First
(EDF) algorithm, has a lower bound of Ω(∆). Both algo-
rithms may preempt and migrate jobs many times. Only
recently, a more sophisticated algorithm with competitive

ratio O(logm) has been derived [4]. Despite this improve-
ment, there remains a huge gap to the best known lower
bound on the competitive ratio of 5/4 [10].

The non-preemptive (and thus non-migratory) variant
of the problem is hopeless in terms of competitiveness.
Saha [11] ruled out the existence of an algorithm with com-
petitive ratio f(m), for any computable function f . She gave
a lower bound of Ω(log ∆) or n on the competitive ratio,
complemented by an O(log ∆)-competitive algorithm. (An
upper bound of n is obvious.) However, in the special case
of unit processing times, which was also studied implicitly
in the context of energy minimization [1], the optimal online
algorithm has the exact competitive ratio of e ≈ 2.72 [1, 5].

In the related speed-augmentation problem, an online al-
gorithm has access to higher-speed machines instead of a
larger number of machines than the offline adversary. This
problem under free migration is quite well understood in
the sense that online algorithms with a speed requirement
of roughly 2 are known [9,10]. Also trade-offs between speed
and machine augmentation were considered for this setting
in [9].

For non-migratory online scheduling, there only exist re-
sults involving speed augmentation. Chan, Lam, and To [3]
gave an algorithm with speed requirement 5.828 in the pure
speed-augmentation model, that is, using the same number
of machines as the offline migratory optimum. Concerning
trade-offs, they also give an algorithm that requires d(1 +
1/ε)2e ·m speed-(1+ε)2 machines for any ε > 0. They state
as an open question if there exists a non-migratory online
algorithm using only f(m) speed-1 machines, where f is a
function on m, on instances for which there is a migratory
optimum solution on m machines [3].

The power of migration for machine minimization has
been investigated also in the offline setting, in which all jobs
are known in advance [7,8]. In particular, Kalyanasundaram
and Pruhs [7] have shown that any migratory solution on m
machines can be transformed into a non-migratory solution
on 6m− 5 machines.

It is noteworthy that the preemptive migratory offline
problem can be solved in polynomial time by modeling it
as a linear program or maximum flow problem [6].

Our contribution.
Our main result is to rule out the existence of non-

migratory online algorithms that can guarantee to find a
schedule using a number of machines, that is indepen-
dent of the number of jobs n or their processing times.
More precisely, any non-migratory online algorithm may re-
quire Ω(logn) many machines, whereas a migratory schedule
on m ≥ 3 machines exists. Note that when allowing migra-
tion, then it is possible to construct a feasible online schedule
on O(m logm) machines [4].

To the best of our knowledge, our lower bound is the first
non-trivial result on the non-migratory scheduling problem
without speed augmentation, and it answers an open ques-
tion raised in [3]. We derive the lower bound by a recursive
construction in which any non-migratory online algorithm
spreads jobs over machines in such a way that releasing an-
other job forces it to open a new machine. This is inherently
different from previous lower-bound constructions [9,10] (for
migratory algorithms), in which any algorithm (using too
little resources) is forced to open a new machine because it

has delayed the wrong jobs and needs to finish too much
aggregate volume by a certain deadline.

Our lower-bound result does not only complement previ-
ous results on the power of migration, it also strongly con-
trasts them. Firstly, in the offline setting of our problem,
every migratory schedule can be transformed into a non-
migratory one by increasing the number of machines only by
a small constant factor [7]. Secondly, a small (factor 5.83)
increase in the speed is sufficient for an online algorithm
to find a non-migratory schedule on the same number of
machine, m, as the optimal migratory schedule [3]. Thus,
migration has a rather negligible power in offline scheduling
or when having extra speed, but it has a huge impact—even
unbounded in m—for our online problem.

Competitive analysis is the major concept for evaluating
the performance of online algorithms. Instead of compar-
ing the performance of an online non-migratory algorithm
with an optimal migratory schedule, one compares here with
an optimal non-migratory schedule. A close connection be-
tween both ratios is not too difficult to see, and we describe
our further results using the notion of competitive ratios.
Indeed, we give the first competitiveness results for our non-
migratory scheduling complementing earlier results that re-
quired speed-augmentation [3].

• Our strong lower bound above, implies a general lower
bound of Ω(logn) on the competitive ratio for non-
migratory scheduling.

However, we identify a number of special cases which ad-
mit O(logm)- or even O(1)-competitive algorithms.

The first special case occurs if all jobs have a processing
time that is at most a constant fraction, say α ∈ (0, 1), of
the respective job time interval. We call these jobs α-loose.

• For instances consisting only of α-loose jobs we give
an O(1)-competitive algorithm. The high-level idea
is very simple. We use a known algorithm with a
performance guarantee based on speed-augmentation
from [3] as a black box. To do so, we increase the pro-
cessing times of our jobs by a certain factor (guided
by the guaranteed speed-factor) and apply the black-
box algorithm. Then we transform back the result-
ing schedule into a feasible schedule on unit-speed ma-
chines for the original instance. The tricky part is to
relate the minimum number of machines required by
the original instance to the number needed by the mod-
ified instance. Our key result is an upper bound on this
increase, which might be of independent interest.

Other special cases are agreeable and laminar instances
which are widely believed to be the most important com-
plementary special cases for scheduling jobs with time inter-
vals. Instances are agreeable, if no intersecting time windows
are fully contained in one another. For laminar instances it
holds that whenever the time windows of two jobs intersect
then they are fully contained in each other.

• We provide an O(logm)-competitive algorithm for
laminar instances. With the above result for α-loose
jobs, we only need to consider the remaining jobs.
For those we design an algorithm which is inspired
by an O(logm)-competitive algorithm for the general
preemptive problem [4] and from which we carefully
eliminate migration.

• For agreeable instances, we achieve a competitive ratio
of O(1). Our algorithm is very simple and constructs
even a non-preemptive solution. One may wonder, if
agreeable instances are even trivial to solve. We an-
swer this negatively by giving the first non-trivial lower
bound, 6 − 2

√
6 ≈ 1.10, on the competitive ratio for

agreeable instances, even for the migratory problem.

Note that these positive results for special cases also jus-
tify the complexity of our lower-bound construction; a con-
struction as simple as the one in Saha’s lower bound for the
non-preemptive problem [11], in which all jobs are α-loose
and form a laminar instance, is not possible in our case.

Outline.
In Section 2, we formally define the problem and give some

structural results. We construct the strong lower bound in
Section 3. In Section 4, we give an O(1)-competitive al-
gorithm for instances consisting of α-loose jobs. We de-
rive O(logm)- and O(1)-competitive algorithms for laminar
and agreeable instances in Sections 5 and 6, respectively.

2. PRELIMINARIES

Problem definition.
We are given a set of n jobs where each job j ∈
{1, 2, . . . , n} has a processing time pj ∈ Q, a release date rj ∈
Q which is the earliest possible time at which the job can
be processed, and a deadline dj ∈ Q by which it must be
completed. The task is to determine a feasible preemptive
schedule on a minimum number of identical parallel ma-
chines. In a feasible schedule each job j is scheduled for pj
units of time within the time window [rj , dj). Each machine
can process at most one job at the time, and no job is run-
ning on multiple machines at the same time. We allow job
preemption, i.e., a job can be preempted at any moment
in time and may resume processing later. We distinguish
migratory and non-migratory preemptive schedules. In a
migratory schedule, a preempted job may resume process-
ing on an arbitrary machine, whereas in the non-migratory
setting, each job is processed on exactly one machine.

In this paper we focus our investigations on the perfor-
mance of non-migratory online algorithms compared to a
migratory offline optimum. However, we note a direct con-
nection to competitive analysis, the standard method to eval-
uate the performance of online algorithms; see, e.g., [2]. The
difference is that in competitive analysis we compare the
performance of an online algorithm with an optimal offline
solution within the same problem setting with respect to
migration (and or preemption). In this paper, we give first
non-trivial bounds on the competitive ratio of non-migrative
online algorithms. In general, we call an online algorithm ρ-
competitive if m′ machines with m′ ≤ ρ · OPT suffice to
guarantee a feasible solution for any instance that admits a
feasible schedule on OPT machines.

Throughout this paper we assume that the optimum num-
ber of machines is known to the online algorithm. It has been
shown in [4] that we can do so at the loss of a small constant
factor in the competitive ratio.

Notation.
We denote the (processing) interval of job j by I(j) =

[rj , dj), and we say j covers each time point t ∈ I(j).

For a set of jobs S, we define I(S) = ∪j∈SI(j). For I =
∪ki=1[ai, bi) where [a1, b1), . . . , [ak, bk) are pairwise disjoint,

we define the length of I to be |I| =
∑k
i=1(bi − ai).

We distinguish jobs by the relation between processing
volume of a job and the length of its interval. We call a
job α-loose, for some α < 1, if pj ≤ α(dj − rj) and α-tight
otherwise.

The laxity of a job j is defined as `j = dj − rj − pj . The
remaining processing time of j at time t is denoted by pj(t).

Characterization of the optimum.
The optimal number of machines can be characterized

based on the work load of jobs to be processed in certain
time intervals [4]. Interestingly, in [4] only the lower bound
on m was used. Now, in this new work we crucially employ
the exact characterization, that is, lower and upper bound.

Given a finite union of intervals I ⊂ R, let the contribu-
tion of a job j to I be C(j, I) := max{0, |I ∩ I(j)| − `j},
i.e., the least amount of processing that j receives during I
in any feasible schedule. Let the contribution of a job set S
to I, denoted by C(S, I), be the sum of the individual con-
tributions of jobs in S.

Theorem 1 ([4]). Let m be the minimum number of
machines needed to schedule a given job set S feasibly. There
exists a finite union of intervals I with dC(S, I)/|I|e = m
but none with dC(S, I)/|I|e > m.

Power of migration and competitive ratio.
The performance of non-migratory online scheduling com-

pared to migratory offline scheduling is closely related to the
competitive ratio for non-migrative scheduling. In fact, we
observe that they are equal up to a constant factor.

Lemma 1. Let f and g be functions in m, the optimal
number of machines in a migratory schedule. The following
two statements are equivalent for some g ∈ Θ(f).

(a) There is an online algorithm that computes a non-
migratory schedule on f(m) ·m machines for any in-
stance, for which there is a migratory schedule on m
machines.

(b) There is a g(m)-competitive online algorithm for non-
migratory scheduling.

To see that, the following result by Kalyanasundaram and
Pruhs [7] will become handy.

Theorem 2 ([7]). Any feasible migratory schedule
on m machines can be turned (offline) into a feasible non-
migratory schedule on 6m− 5 machines.

Proof of Lemma 1. For a given instance, let m be the
number of machines used in an optimal migratory sched-
ule and let OPT be the number of machines in an optimal
non-migratory solution. Clearly, m ≤ OPT. Furthermore,
Theorem 2 implies OPT ≤ 6m− 5.

Suppose there is an online algorithm that computes a non-
migratory schedule on k ≤ f(m) · m ≤ f(m) · OPT and,
thus, the algorithm is f(m)-competitive for non-migratory
scheduling. We conclude that (a) implies (b).

To see the reverse direction, assume that there is
a g(m)-competitive algorithm for non-migratory schedul-
ing. This algorithm finds a non-migratory schedule using
at most g(m) · OPT < g(m) · 6m many machines, which
is f(m) ·m for some g ∈ Θ(f). Thus, (b) implies (a).

3. A STRONG LOWER BOUND
We prove the following theorem.

Theorem 3. Let m ≥ 3. For every (deterministic) non-
migratory online algorithm, there is an instance on n jobs
such that the algorithm requires Ω(logn) machines.

We inductively define an adversarial strategy that forces
any non-migratory online algorithm to use an unbounded
number of machines while (offline) the resulting instance
has a migratory schedule on three machines which even has
some idle intervals. This is made formal in the following key
lemma which directly implies the theorem.

Lemma 2. For every non-migratory online algorithm A
and k ∈ N, there is an instance Ik with O(2k) jobs and a
critical time t0 such that:

(i) In the schedule computed by A, there are at time t0
unfinished critical jobs j1, . . . , jk ∈ Ik assigned to k
different machines.

(ii) There is a feasible schedule of Ik on three machines
with the following properties. Two machines are idle
within [t0, t0 + ε) for some ε > 0. The other one is
continuously idle from t0 on.

The base of our inductive proof is easy to see. The in-
tuition for the induction step is the following. Given Ik as
above, we obtain Ik+1 by first releasing Ik, forcing the online
algorithm to open k different machines. We then release I ′k,
a scaled-down copy of Ik which can be handled during the
idle intervals of the offline schedule, and we distinguish two
cases. Firstly, if the online algorithm uses k + 1 machines
to schedule both Ik and I ′k, we will be able to select a suit-
able subset of the critical jobs of Ik and I ′k to obtain the
critical jobs of Ik+1. Secondly, if the online algorithm uses
the same k machines to schedule both Ik and I ′k, we release
a new job. This job will be designed to be in conflict with
each of the critical jobs of I ′k and will thus require the online
algorithm to open a new machine for the new job. The new
job and the critical jobs of Ik will then be the critical jobs
of Ik+1.

Before we give the formal proof of the lemma, we intro-
duce some notation: The latest time when a job j has to
be assigned to a machine and the earliest time when it can
be finished are denoted by aj = rj + `j and fj = dj − `j ,
respectively.

Proof of Lemma 2.. We define the instances Ik de-
pending on constants α ∈ (1/2, 1) and β ∈ (0, 1/2), which
will later be chosen appropriately. For the sake of intu-
ition, α and β can be thought of constants very close to 1
and 0, respectively.

Clearly, I1 exists. We define I2: At time 0, we release
job j1 with pj1 = α and dj1 = 1. From aj1 on, we start
additionally releasing short jobs: For the i-th short job j,
we set rj = aj1 + (i− 1) ·β, pj = αβ, and dj = aj1 + iβ. We
ensure that our choice of α and β fulfills⌊fj1 − aj1

β

⌋
· αβ > `j1 , (1)

implying that the total processing time of short jobs that
have to be scheduled within [aj , fj) (I(j1) will eventu-
ally add up to more than the laxity of of j1. This ensures
that A has to schedule some short job on a different machine

than j1. We define j2 to be the first such job, let t0 := aj2 ,
and stop releasing jobs then.

Given Equation (1), we check (i) and (ii) for critical
jobs j1, j2 and critical time t0: By definition of j1 and j2,
they are assigned to different machines by A. Using t0 =
aj2 < fj1 (implied by Equation (1)) and t0 = aj2 < fj2
(implied by α > 1/2), both jobs are not finished at time t0,
that is, we get (i). On the other hand, an offline schedule
could simply run job j1 on one machine and all short jobs
on another machine. Since for all jobs j holds pj < dj − rj ,
they can be preempted within some interval [t0, t0+ε). This
shows (ii).

We check that Equation (1) can indeed be made true:
Using the definition of aj , fj , and `j , we obtain that Equa-
tion (1) is equivalent to⌊2α− 1

β

⌋
· αβ > 1− α,

which, for instance, is true for α = 3/4 and β = 1/4.
For k > 2, we define Ik inductively. Suppose the lemma

is true for k − 1. We start by applying the lemma once,
creating k − 1 critical jobs j1, . . . , jk−1 that are not fin-
ished by A and assigned to k − 1 different machines at the
critical time t0. Also, there is a feasible schedule of Ik on
three machines such that machine 1 and 2 are idle within
some [t0, t0 + ε) with ε > 0 while machine 3 is continuously
idle from t0 on. Recall that pj(t) is defined to be the re-
maining processing time of a job j at time t. We define

ε′ := min
{
ε, pj1(t0), . . . , pjk−1(t0)

}
> 0 (2)

to be the largest ε′ such that within [t0, t0 + ε′) no job ji
for i ∈ {1, . . . , k − 1} can get finished by A and machine 1
and 2 can still be idle in a feasible schedule. We apply
the lemma with k − 1 another time in a scaled-down way
such that the latest deadline (i.e., that of the job released
first) occurring in this sub-instance I ′k is t0 + ε′/2. We call
the corresponding critical jobs and time j′1, . . . , j

′
k−1 and t′0,

respectively, and distinguish two cases:
Case 1: The jobs j1, . . . , jk−1 and j′1, . . . , j

′
k−1 are sched-

uled by A on different sets of machines. By us-
ing the induction hypothesis, there is a job j′i such
that j1, . . . , jk−1, j

′
i are scheduled on k different ma-

chines. By our choice of ε′ and the induction hy-
pothesis for I ′k, these jobs are not finished by the
critical time t′0, implying (i). We also show (ii):
Again by our choice of ε′, only I ′k has to be sched-
uled within [t0, t0 +ε′/2). By the induction hypothesis
regarding I ′k, there is a schedule of this sub-instance
with the following property: Two machines are idle
within [t′0, t

′
0 + ε′′) for some ε′′ > 0 and the other

machine is continuously idle from t′0 on. Since we
can again choose to leave machine 3 continuously idle
from t′0 on, we get (ii).

Case 2: The jobs j1, . . . , jk−1 and j′1, . . . , j
′
k−1 are sched-

uled by A on the same set of machines. Then we ad-
ditionally release exactly one job j? at time t′0 with
deadline t0 + ε′. We choose

pj? ∈
(
t0 + ε′ − t′0 − min

i=1,...,k−1
pj′i(t

′
0),

t0 + ε′ − t′0
)
,

ensuring that j? cannot be scheduled on the same ma-
chine as any j′i for i ∈ {1, . . . , k − 1} (lower bound
on pj?) and that it has strictly positive initial laxity
(upper bound on pj?). We further make sure that

pj? > t0 +
ε′

2
− t′0,

meaning that j? cannot be finished at time t0 + ε′/2
(note that pj? still exists since t0 + ε′/2 − t′0 < t0 +
ε′ − t′0). We release no further jobs and claim that (i)
and (ii) hold with critical jobs j1, . . . , jk−1, j

? and crit-
ical time t′′0 := t0 + ε′/2.
We first show (i): Consider the schedule computed
by A. By the induction hypotheses for Ik−1 and our
choice of ε′, at time t′′0 the jobs j1, . . . , jk−1 are not fin-
ished and scheduled on k−1 different machines. Using
the assumption that j′1, . . . , j

′
k−1 are scheduled on ex-

actly the same set of machines as j1, . . . , jk−1 and the
fact that j? cannot be scheduled on the same machine
as any j′i for i ∈ {1, . . . , k−1}, the jobs j1, . . . , jk−1, j

?

are scheduled on k different machines. By construction
of j?, it is not finished by time t′′0 either.
To create a schedule obeying the condition in (ii), we
schedule the whole instance except for j? according
to Part (ii) of the induction hypothesis (for both Ik−1

and I ′k−1). Using that the latest deadline in I ′k−1 is t0+
ε′/2, in this schedule, machine 3 is continuously idle
from t′0 on and machine 1 (and 2) within [t0+ε′/2, t0+
ε′). We schedule j? within [t′0, t0 + ε′/2) on machine 3
and afterwards on machine 1, starting it on machine 1
as late as possible. Since j? has positive initial laxity,
this again leaves an idle period [t′′0 , t

′′
0 + ε′′) for ε′′ > 0

on machines 1 and 2. Also, machine 3 is continuously
idle from time t′′0 on, meeting the requirements of (ii).
We illustrate this schedule in Figure 1.

We finally note that we have indeed O(2k) jobs in the
resulting instance: I2 has a constant number of jobs, and
for Ik we release Ik−1 twice plus at most one additional job,
showing that Ik has O(2k) jobs.

Using Lemma 1, we obtain a similar theorem concerning
competitive ratio. We get the following more explicit state-
ment by directly applying Theorem 2.

Theorem 4. Consider instances with n jobs that have a
feasible non-migratory offline schedule on OPT machines,
where OPT ≥ 13 is fixed. Every (deterministic) non-
migratory online algorithm requires Ω(logn) machines.

Proof. Suppose there is a non-migratory online algo-
rithm A on o(logn) machines. Using Lemma 2, we obtain
instances with n jobs on which A uses more than Ω(logn)
machines and which have feasible (migratory) schedules on 3
machines. Using Theorem 2, we can turn these schedules
into a feasible non-migratory schedules on 6 ·3−5 = 13 ma-
chines. We obtain a contradiction to the assumption that A
only requires o(logn) machines.

4. A CONSTANT-COMPETITIVE
ALGORITHM FOR LOOSE JOBS

In this section, we consider instances consisting of loose
jobs, i.e., jobs j with pj ≤ α · (dj − rj) for arbitrary con-
stant α ∈ (0, 1). The main theorem of this section is the
following.

Theorem 5. For any fixed α ∈ (0, 1), there is a non-
migratory online algorithm on O(m) machines for instances
consisting only of α-loose jobs.

The key to proving the result is a reduction to a speed-
augmentation problem on m machines.

Theorem 6. Suppose there is a non-migratory online al-
gorithm A on f(m) speed-s machines for general instances.
Then, for every fixed α ∈ (0, 1/s), there is a non-migratory
online algorithm on f(O(m)) (unit-speed) machines for in-
stances consisting only of α-loose jobs.

The proof idea is as follows. To schedule α-loose jobs
(for α < 1/s) without additional speed, we increase the pro-
cessing time of each job from the input instance by a factor
of s. We denote the set of jobs with modified processing
times by Js. Note that the resulting instance is feasible in
the sense that pj ≤ dj−rj for all jobs j. We apply the speed-
s algorithm to this instance. Whenever a job is scheduled
in the resulting schedule, our algorithm schedules the cor-
responding job from the original instance on the respective
machine.

To analyze our algorithm, we have to relate the minimum
numbers of machines needed for scheduling the original in-
stance J and for scheduling the instance with increased pro-
cessing times Js, respectively. To do so, we introduce two
auxiliary job types. For some γ ∈ (0, 1) and every job j, we
define two jobs j/γ , j

.
γ with

I(j/γ) := [rj , dj − γ`j), pj/γ := pj

and I(j.γ) := [rj + γ`j , dj), pj.γ := pj ,

that is, we remove a γ-fraction of the laxity from either side
of j’s feasible time window. We further define J/γ := {j/γ | j ∈
J} and J.γ := {j.γ | j ∈ J}. The following lemma relates the
number of machines needed for scheduling J to that needed
for scheduling J/γ and J.γ , and it may be of independent
interest. Here we denote by m(S) the minimum number of
machines needed to schedule an instance S.

Lemma 3. For every instance J and γ ∈ (0, 1), we have

m(J/γ) ≤ 1

1− γ ·m(J) + 1

and m(J.γ) ≤ 1

1− γ ·m(J) + 1. (3)

Proof. We show the statement for J.γ , and the proof
for J/γ is symmetric. According to Theorem 1, there exists a
finite union of intervals I such that m(J.γ) = dC(J.γ , I)/|I|e.
Without loss of generality, we can assume I = [g1, h1)∪· · ·∪
[gk, hk) with hi < gi+1 for all i = 1, . . . , k − 1. To derive
the relationship between m(J.γ) and m(J), we expand I to
a superset (and also finite union of intervals) ex(I) such
that | ex(I)| = |I|/(1− γ). We will show for each job j ∈ J
with C(j.γ , I) > 0 that C(j, ex(I)) ≥ C(j.γ , I). This will
imply

m(J.γ)− 1 ≤
C(J.γ , I)

|I| =

∑
j∈J C(j.γ , I)

|I|

≤
∑
j∈J C(j, ex(I))

(1− γ) · | ex(I)| =
1

1− γ ·
C(J, ex(I))

| ex(I)|

≤ 1

1− γ ·m(J),

t0 t′0 t′′0 t′′0 +ε′′ t0+ε′ t0+ε

Ik−1

Ik−1

I ′k−1

I ′k−1

j?

j?

Figure 1: The optimal schedule constructed in Case 2 of the proof of Lemma 2. Recall t′′0 = t0 + ε′/2.

where we use the other direction of Theorem 1 in the last
step. Hence, Inequality (3) will follow.

The expanding works as follows. Given I as above, we
expand each of the intervals [gi, hi) to [g′i, hi) with g′i ≤ gi
and obtain ex(I) := [g′1, h1) ∪ · · · ∪ [g′k, hk). We start at the
rightmost interval [g′k, hk) and try to set g′k := hk − (hk −
gk)/(1 − γ). If this would, however, produce an overlap
between [g′k, hk) and [gk−1, hk−1), we set g′k := hk−1 as well
as δk := hk−1−(hk−(hk−gk)/(1−γ)) and try to additionally
expand [gk−1, hk−1) by δk instead. After that, we continue
this procedure until i = 1. More formally, we let h0 = −∞
as well as δk+1 = 0, and for all i = k, . . . , 1 we set

g′i := max

{
hi−1, hi −

(
hi − gi
1− γ + δi−1

)}

and δi := max

0, hi−1 −

(
hi −

(
hi − gi
1− γ + δi−1

)) .

Obviously, indeed | ex(I)| = |I|/(1− γ).
We show C(j, ex(I)) ≥ C(j.γ , I) for all j ∈ J

with C(j.γ , I) > 0. By the definition of contribution, we
have

C(j, ex(I)) = max{0, | ex(I) ∩ I(j)| − `j}
and C(j.γ , I) = max{0, |I ∩ I(j.γ)| − `j.γ}

= max{0, |I ∩ I(j.γ)| − (1− γ) · `j},

that is, we can restrict to showing | ex(I) ∩ I(j)| ≥ |I ∩
I(j.γ)|+ γ`j . Next, we define I ′ := I ∩ I(j.γ). Using the fact
that I ′ ⊆ I implies ex(I ′) ⊆ ex(I), it even suffices to show

| ex(I ′) ∩ I(j)| ≥ |I ′|+ γ`j . (4)

To see this, we distinguish two cases:
Case 1: The leftmost point of ex(I ′) is left of rj . Since the

leftmost point of I ′ was not left of rj+γ`j , [rj , rj+γ`j)
is a subset of ex(I ′). Consequently, we have | ex(I ′) ∩
I(j)| − |I ′ ∩ I(j)| ≥ γ`j . Using |I ′ ∩ I(j)| = |I ′|, the
claim follows.

Case 2: The leftmost point of ex(I ′) is not left of rj . By
the way our expanding works, we have that ex(I ′)
takes up a length of |I ′ ∩ I(j)|/(1 − γ) within I(j).
Plugging |I ′| > `j.γ = (1 − γ) · `j , which follows

since C(j.γ , I) > 0, into that, we also obtain | ex(I ′) ∩
I(j)| − |I ′ ∩ I(j)| ≥ γ`j . Again using |I ′ ∩ I(j)| = |I ′|,
the claim follows.

This completes the proof.

We apply this lemma to get a similar statement about jobs
with an in increased processing time, Js, which might be of
independent interest. Formally, for j ∈ J , let js denote a
copy of job j with a processing time increased by a factor s,
and Js := {js | j ∈ J}.

Lemma 4. Let s ≥ 1. For every instance J consist-
ing only of α-loose jobs for some fixed α ∈ (0, 1/s), we
have m(Js) = O(m(J)).

Proof. We investigate the number of machines required
to schedule Js: To do so, we define

δ :=
1− αs
dse · (dj − rj).

Note that `js ≥ (1− αs) · (dj − rj) > 0 and thus

0 < δ ≤ `js

dse . (5)

Further, for every job j ∈ J , we define dse different
jobs j1, . . . , jdse with

I(ji) := [rj + (i− 1) · (pj + δ), rj + i · (pj + δ)),

pji := pj

for all i < dse
and I(jdse) := [rj + (dse − 1) · (pj + δ), rj + s · pj + dseδ)),

pjdse := (s− dse+ 1) · pj .

Furthermore let Ji := {ji | j ∈ J} for all i. Now
note that, for showing m(Js) = O(m(J)), it suffices to
show that m(Ji) = O(m(J)) for all i. This is because
we have I(ji) ⊆ I(js) for all i, I(ji) ∩ I(ji′) 6= ∅ for
all i, i′, and

∑
i pji = pjs , which can be easily checked.

Thus any feasible schedule of J1, . . . , Jdse on O(m(J)) ma-
chines each can be transformed into a feasible schedule of Js

on dse·O(m(J)) = O(m(J)) by scheduling each js whenever
any ji is scheduled in the respective schedule.

We show that indeed m(Ji) = O(m(J)) for all i. We first
show this for i < dse: Note that, using Inequality 5, we
have `ji = δ = β`j > 0 for all j ∈ J and constant β > 0.
Thus, by applying Lemma 3 up to two times to shorten the
time window from both sides, m(Ji) = O(m(J)). For i =
dse, first note that the above reasoning also works for J ′dse :=

{j′dse | j ∈ J} with

I(j′dse) := [rj + (s− 1) · pj + (dse − 1) · δ,
rj + s · pj + dseδ)),

pj′dse
:= pj ,

that is, m(J ′dse) = O(m(J)). Now clearly any feasible sched-

ule of J ′dse can be transformed into one of Jdse without in-
creasing the number of machines by scheduling each jdse
whenever j′dse is scheduled unless jdse is finished, imply-

ing m(Jdse) ≤ m(J ′dse) = O(m(J)).

We now apply the preceding lemma in the proof of Theo-
rem 6.

Proof of Theorem 6. To schedule J only having α-
loose jobs with constant α < 1/s, we first transform J
into Js. Using Lemma 4, by applying A to Js, we obtain
a non-migratory schedule of Js on f(m(Js)) = f(O(m(J)))
speed-s processors. We transform this schedule into a non-
migratory schedule of J on f(O(m(J))) speed-1 machines
by replacing each js by j for all j, which does not violate
feasibility by the definition of js.

We are now ready to utilize an algorithm due to Chan,
Lam, and To [3] for which they prove an upper bound on
the required number of machines that scales with the given
speed—even for speeds arbitrarily close to 1.

Theorem 7 (Chan, Lam, and To [3]). For ev-
ery ε > 0, there is a non-migratory online algorithm
on d(1 + 1/ε)2e speed-(1 + ε)2 machines.

Indeed, it suffices to plug Theorem 7 as a black box into
Theorem 6 to obtain Theorem 5. By applying Lemma 1, we
also get the following result for the competitive ratio.

Theorem 8. For any fixed α ∈ (0, 1), there there is
an O(1)-competitive non-migratory online algorithm for in-
stances consisting only of α-loose jobs.

5. AN O(log m)-COMPETITIVE ALGO-
RITHM FOR LAMINAR INSTANCES

In this section, we consider laminar instances in which for
any two jobs j, j′ with I(j) ∩ I(j′) 6= ∅, it holds that I(j) ⊆
I(j′) or I(j′) ⊇ I(j). We prove the following result.

Theorem 9. There exists an online algorithm that pro-
duces a non-migratory solution on O(m logm) machines for
laminar instances.

For ease of presentation, we assume throughout this sec-
tion that jobs are indexed from 1 to n in accordance with
their release dates: We assume j < j′ implies rj ≤ rj′ .
If rj = rj′ , we assume that j < j′ implies dj ≥ dj′ . We
say that j dominates j′ (denoted as j � j′) if j < j′

and I(j) ⊇ I(j′). We also say j′ is dominated by j and
denote this as j′ ≺ j.

5.1 Description of the Algorithm
It suffices to consider α-tight jobs for some fixed α ∈ (0, 1).

The remaining α-loose jobs are scheduled on a separate set
of O(m) machines as described in the previous section (cf.
Theorem 5).

Job Assignment.
We open m′ machines and will later see that we can choose

m′ = O(m logm). At every release date, the arriving jobs
are immediately assigned to their machines in order of job
indices. Each job is assigned to exactly one machine, that is,
we obtain a non-migratory schedule. Consider some job j.
If there is a machine that has no job j′ with I(j)∩ I(j′) 6= ∅
assigned to it, we assign j to any such machine. Otherwise
we execute the following procedure.

Consider any machine and the jobs j′ assigned to it
with I(j) ∩ I(j′) 6= ∅. Based on the laminarity of the in-
stance and the order in which we assign jobs, all these j′

dominate j and are ordered linearly by ≺. Consequently,

there exists a unique ≺-minimal job among them, which
is said to be currently responsible on the considered ma-
chine. Consider the set of currently responsible jobs of all
machines. Again, by laminarity of the instance, these jobs
form a chain c1(j) ≺ · · · ≺ cm′(j). We call ci(j) the i-th
candidate of j.

We now want to select a candidate ci(j) and assign j to
the same machine as ci(j). Consider the laxity of a candi-
date, which can be viewed as a budget for delaying the jobs.
Since I(j) ⊆ I(ci(j)), it is a necessary criterion that the
budget of ci(j) suffices to schedule both j and the jobs j′

with I(j′) ⊆ I(ci(j)) that have been assigned to the same
machine earlier. Intuitively, we would also like to minimize
the candidate that we pick w.r.t. ≺ so as to save the bud-
get of jobs with larger time windows. However, it fails to
greedily assign jobs to the machine of their ≺-minimal can-
didate that fulfills the above necessary criterion. This can
be shown using a well-known class of difficult (laminar) in-
stances [10, Theorem 2.13].

Instead we use a more sophisticated balancing scheme sim-
ilar to that in [4]: We partition the budget of each candidate
into m′ equally-sized (sub-)budgets. For every i, we only
consider the i-th budget of ci(j) when assigning j. When
picking ci(j) and assigning j to the same machine, we charge
not just pj but |I(j)| ≥ pj to the i-th budget of ci(j). This
policy ensures that, as long as no budget becomes negative,
there is a feasible schedule under the current assignment
(cf. Lemma 5).

We make this more formal: We call a job j′ that has been
assigned to the machine of its h-th candidate ch(j′) the h-
th user of ch(j′). We denote the set of all h-th users of a
(candidate) job j′ by Uh(j′), for all h. Note that at any time
the h-th budget of j′ has been charged exactly |I(j′′)| for all
its users j′′. To assign j, we select the smallest i such that
the i-th budget of ci(j) can still pay for |I(j)|, that is,

`ci(j)
m′

−
∑

j′∈Ui(ci(j))

|I(j′)| ≥ |I(j)|. (6)

If we find such an i, we assign j to ci(j) (and thereby add j
to Ui(ci(j)) and charge |I(j)| to the i-th budget of ci(j)). If
we do not find such an i, the assignment of j fails. In the
analysis, we will show that the latter case will never happen
if m′ is chosen large enough.

Scheduling.
At any time and on each machine, we process an arbitrary

unfinished job assigned to it with minimum deadline. It will
later turn out (cf. Lemma 5) that there is always a unique
such job.

5.2 Analysis of the Algorithm
We first show that our algorithm obtains a feasible sched-

ule if no job assignment has failed. Then we give a proof
of the fact that the job assignment never fails on instances
that admit a feasible schedule. As a byproduct, we get a
simplification of our scheduling rule.

Lemma 5. Suppose the job assignment does not fail for
any job. We have the following two properties.

(i) Our algorithm produces a feasible schedule.
(ii) At any time and on each machine, there are no two

unfinished jobs with the same deadline.

Proof. Consider some machine. We first show (ii) by in-
duction on the jobs assigned to this machine in order of their
indices. The induction base is clear. So assume the state-
ment holds until some job j gets assigned to the considered
machine.

The statement is obviously fulfilled if no other unfinished
job on the considered machine has deadline dj . So sup-
pose j? with dj? = dj exists. We note that then the can-
didate j′ of j must (also) have deadline dj : Otherwise, us-
ing the laminarity of the instance, we have dj? < dj′ and
thus j′ � j? and j′ cannot be the ≺-minimal job whose in-
terval contains rj . Since j is assigned to the machine of its
candidate j′, one sub-budget and thus the total budget of j′

must be at least |I(j)| right before j is assigned. Consider
the state of j′ and its users at this time. Using Part (ii) of
the induction hypothesis, j′ was so far only preempted at
some time t when there was a user j′′ of it with t ∈ I(j′′).
Thus, it was processed for at least

(
|I(j′)| − (dj′ − rj)

)
−

m′∑
i=1

|I(Ui(j
′))|

≥
(
|I(j′)| − (dj′ − rj)

)
−
(
`j′ − |I(j)|

)
=|I(j′)| − `j′ = pj′ ,

using dj = dj′ in the second step. Hence j′ is finished at
time rj , a contradiction.

To see (i), consider some job j and note that, by apply-
ing (ii), whenever it is preempted at some time t, there must
be a user j′ of j with t ∈ I(j′). According to Inequality (6), j
is thus preempted for no longer than

m′∑
i=1

|I(Ui(j))| ≤
m′∑
i=1

∑
j′∈Ui(j)

|I(j′)| ≤ m′ · `j
m′

= `j .

Therefore, j can be processed for pj time units.

It remains to show that the job assignment never fails for
some m′ = O(m logm). The proof idea is as follows: We
assume the algorithm fails to assign a job j?. Then we select
a critical job set and, by a load argument on this set, derive
a contradiction to the existence of a feasible (migratory)
schedule on m machines. Intuitively, this set is a minimal
subset of the instance that still causes the failure. Note
that this construction resembles the one from [4]. Indeed,
the careful choice of our set allows us to use a lower bound
introduced in [4] which is based on such a critical set.

We initialize Gm′ := {j?}. Given Gi, we construct Fi
and Gi−1 in the following way. First, Fi is defined to be the
set of all ≺-maximal i-th candidates of jobs in Gi. Subse-
quently, Gi−1 is constructed by adding all the i-th users of
jobs in Fi to Gi. Formally,

Fi := M≺
(
{ci(j) | j ∈ Gi}

)
and Gi−1 := Gi ∪

⋃
j∈Fi

Ui(j),

where M≺ is the operator that picks out the ≺-maximal
elements from a set of jobs: M≺(S) := {j ∈ S | @j′ : j ≺ j′}.
After m′ many such iterations, that is, when G0, F1, . . . , Fm′
have been computed, we set F0 := M≺(G0).

We define

F := F0 ∪ F1 ∪ · · · ∪ Fm′ and T :=
⋃
j∈F0

I(j),

where we call (F, T) a witness set. The idea is to show
that (F, T) obeys the following definition for suitably chosen
parameters. This is the basis for applying a lower bound
from [4] which we state below.

Definition 1 ([4]). Let F ′ be a set of α-tight jobs and
let T ′ be a non-empty finite union of disjoint intervals. For
some µ ∈ N and β ∈ (0, 1), a pair (F ′, T ′) is called (µ, β)-
critical if

(i) each t ∈ T ′ is covered by at least µ distinct jobs in F ′,
(ii) and |T ′ ∩ I(j)| ≥ β`j for any j ∈ F ′.

This will allows us to use the following result as a lower
bound on the optimum number of machines m.

Theorem 10 ([4]). If there exists a (µ, β)-critical pair,

then m = Ω
(

µ
log 1/β

)
.

To do so, we first show some structural properties of (F, T)
that will be useful later. Towards this, we define the follow-
ing notation. For two job sets S1 and S2, we write S1 ≺ S2

if, for each j1 ∈ S1, there is a j2 ∈ S2 with j1 ≺ j2.

Lemma 6. For any witness set (F, T), we have the fol-
lowing structural properties:

(i) We have F0 ≺ · · · ≺ Fm′ .
(ii) The sets F0, . . . , Fm′ are pairwise disjoint.

Proof. To see (i), we define Ci := {ci(j) | j ∈ Gi}, for
every 1 ≤ i ≤ m′, and C0 := G0. We first show Ci−1 ≺ Ci
for every 1 ≤ i ≤ m′. For i = 1, this directly follows from the
construction. Consider 2 ≤ i ≤ m′. Let j be an arbitrary
job in Ci−1, which is then an (i − 1)-th candidate of some
job in Gi−1, say, job j′. According to the construction, we
have j′ ∈ Gi, or j′ is the i-th user of some job in Fi ⊆ Ci. In
both cases, Ci contains the i-th candidate of job j′, which
dominates job j. Hence, Ci−1 ≺ Ci. Since Fi−1 and Fi
are obtained from Ci−1 and Ci only by deleting dominated
jobs, Fi−1 ≺ Fi follows.

Consider property (ii) and suppose there is some j ∈ Fi ∩
Fi′ for some i < i′. Then, by (i), there is also a job j′ ∈ Fi′
with j ≺ j′, contradicting the fact that Fi′ only contains ≺-
maximal elements.

We are ready to show that (F, T) is indeed a critical pair.

Lemma 7. The witness set (F, T) is a (µ, β)-critical pair
for µ = m′, β = 1/m′.

Proof of Lemma 7. We first consider Property (1) of
a (µ, β)-critical pair. Given Lemma 6, it is obvious that
every t ∈ I(j) for j ∈ F0 is covered by at least m′ distinct
jobs.

Concerning Property 1 of a (µ, β)-critical pair, we have

T =
⋃
j∈F0

I(j) =
⋃

j∈M≺(G0)

I(j) =
⋃
j∈G0

I(j)

according to the definition of T . Furthermore, G0 contains
all the the i-th users of jobs in Fi, hence |T ∩ I(j)| ≥ `j/m′
for any j ∈ Fi.

We now use Lemma 7 and Theorem 10 to get a lower
bound on m and thereby an upper bound on m′.

Proof of Theorem 9. We show that, for a sufficiently
large constant c and m′ = cm logm, our algorithm always
produces feasible schedules. According to Lemma 5, it suf-
fices to show that the job assignment procedure never fails.
Suppose it does fail. Then we derive the witness set (F, T),
which is a (m′, 1/m′)-critical pair (G,T) by Lemma 7. Using
Theorem 10, we get m = Ω

(
µ/log 1/β

)
= Ω(m′/ logm′),

which is a contradiction if m′ = cm logm for sufficiently
large c, that is, for some m′ = O(m logm) the algorithm
never fails and thus always produces feasible schedules.

Lemma 1 implies the following result for the competitive
ratio.

Theorem 11. There is an O(logm)-competitive non-
migratory online algorithm for laminar instances.

6. AGREEABLE INSTANCES
Consider an instance J in which any two jobs j, j′ ∈ J are

agreeable, that is, rj < rj′ implies dj ≤ dj′ . We also call J
agreeable.

6.1 A constant-competitive non-preemptive
algorithm

For agreeable instances, we derive an online algorithm
that only uses O(m) machines. In fact, we show an even
a stronger result in the context of non-preemptive schedul-
ing.

Theorem 12. There exists an online algorithm that pro-
duces a non-preemptive solution on 32.70 ·m machines for
agreeable instances.

The idea is to again treat α-loose and -tight jobs sepa-
rately for fixed α ∈ (0, 1). To obtain a non-migratory (but
not necessarily non-preemptive) algorithm for α-loose jobs,
note that we could simply use Theorem 6. To derive a non-
preemptive algorithm, we will utilize the following theorem
that has been shown for arbitrary (not necessarily agreeable)
instances in the context of migratory scheduling. Given m′

machines, the algorithm EDF schedules at any time m′ un-
finished jobs with the smallest deadlines.

Theorem 13 ([4]). Let α ∈ (0, 1). EDF is an online
algorithm that produces a feasible (possibly migratory) solu-
tion on m/(1− α)2 machines for any instance that consists
only of α-loose jobs.

Now notice that EDF on agreeable instances never pre-
empts jobs that have already started because the jobs re-
leased later have a larger deadline. This directly implies the
following corollary.

Corollary 1. Let α ∈ (0, 1). EDF is an online algo-
rithm that produces a non-preemptive schedule on m/(1−α)2

machines for any agreeable instance that consists only of α-
loose jobs.

Consider α-tight jobs. We use the following simple al-
gorithm MediumFit: Any job j runs exactly in the inter-
val [rj + `j/2, dj − `j/2), independently of all other jobs.
Note that this algorithm is meaningful in the sense that

running j in [rj + `j , dj) or [rj , dj − `j) does not yield a
schedule on O(m) machines.

The analysis MediumFit works via a load argument.

Lemma 8. Let α ∈ (0, 1). MediumFit is an online al-
gorithm that produces a non-preemptive solution on 16m/α
machines for any agreeable instance that consists only of α-
tight jobs.

Proof. Consider an arbitrary time t and all jobs j′ that
are run by MediumFit at this time, among which we let j be
a job with minimum laxity. We estimate their contributions
to the interval(s)

I = [rj − 2`j , rj + 2`j) ∪ [dj − 2`j , dj + 2`j),

which has a total length of at most 8`j . Distinguish two
cases for each j′ that is run at t.
Case 1: We have |I(j′)| ≥ 2`j . As I(j′) contains rj or dj ,

we have |I ∩ I(j′)| ≥ 2`j . Given that `j′ ≤ `j , j
′

contributes at least 2`j − `j′ ≥ `j to I.
Case 2: We have |I(j′)| < 2`j . As a consequence I(j′) ⊆ I.

Observe that |I(j′)| ≥ `j/2 holds because both j and j′

are run at time t by MediumFit. As j′ is α-tight, its
contribution to I is at least α`j/2.

Let n1 and n2 be the number of jobs corresponding to
the above two cases, respectively. Then the contribution of
the n1 + n2 jobs to I is at least

(n1 + αn2/2) · `j ≥ (n1 + n2) · α`j/2.

Using Theorem 1, the total contribution is upper bounded
by m|I| ≤ 8m`j , implying n1 + n2 ≤ 16m/α.

Corollary 1 and Lemma 8 imply a non-preemptive solution
on m/(1−α)2+16m/α machines, which attains its minimum
at approximately 32.70·m for α ≈ 0.63. Theorem 12 follows.
For the competitive ratio, we get the following result by
Lemma 1.

Theorem 14. There is an O(1)-competitive non-
migratory online algorithm for agreeable instances.

6.2 A non-trivial lower bound
We complement the upper-bound result with the first non-

trivial lower bound for agreeable instances. We can even
restrict to instances where all jobs have the same processing
time.

Theorem 15. For any ε > 0, there is no online algorithm
that produces a migratory solution on (6 − 2

√
6 − ε) ·m ≈

1.10 ·m machines for agreeable instances where all jobs have
identical processing times.

The lower-bound instances have a structure similar to ex-
isting ones for general instances [9, 10]. We say that an
algorithm is behind by w ≥ 0 at some time t if the following
three properties hold:

(i) An optimal schedule could have finished all jobs re-
leased so far at time t.

(ii) The work unfinished by the algorithm is at least w.
(iii) We have dj ≤ t+ 1 for all jobs released so far.

To prove the theorem, we will iteratively apply the follow-
ing lemma.

Lemma 9. Consider an online algorithm A that uses (6−
2
√

6− ε)m machines for some ε > 0. There is a δ > 0 with
the following property.

Let t be a time at which A is behind by w. Then jobs
can be released (in an agreeable way) such that there is a
time t′ > t at which A is behind by w + δ.

Proof. Define β := (6 − 2
√

6 − ε) − 1. We choose
some α ∈ [0, 1]∩Q that is yet to be optimized, and we assume
that αm ∈ N. At time t, we release m jobs j with pj = 1
and dj = t+ 1 + α (type-1 jobs) and αm jobs j with pj = 1
and dj = t+2 (type-2 jobs). We will now show that there is
a δ > 0 such that A is behind by w+δ at time t′ = t+1+α.
Observe that it suffices to give a lower bound of w + δ on
the work that is left of type-1 jobs at time t+ 1 + α.

First note that (1−α)m jobs j with pj = 1 and dj = t+2
could be released at time t + 1 without violating feasibility
of the instance. This leaves at most (α+ β)m machines for
processing the type-1 jobs within [t + 1, t + 1 + α), i.e., a
total capacity of (α2 + αβ)m. Thus, the type-2 jobs can
receive (α2 +αβ)m+ βm−w of processing within [t, t+ 1),
amounting to (α2+αβ)m+βm−w+α2m within [t, t+1+α).
Consequently, at time t′ = t+ 1 +α, the work left of type-1
jobs is at least

αm− ((α2 + αβ)m+ βm− w + α2m) = w + δ.

First note that δ is independent of w. Now the require-
ment δ > 0 is equivalent to

β <
α− 2α2

1 + α
.

Maximizing the right-hand side of this inequality over the
real numbers yields a maximum of 5 − 2

√
6 for α = (

√
6 −

2)/2 ≈ 0.25. By continuity of the right-hand side and def-
inition of β, we can choose a rational α that makes the in-
equality true. This proves the lemma.

We are ready to prove the theorem.

Proof of Theorem 15. Suppose there exists some on-
line algorithm A that uses (6−2

√
6−ε)m machines. Clearly,

for the empty instance and at time 0, A is behind by 0. Now
applying Lemma 9 sufficiently often forces A to be behind
by w at some time t where w exceeds the available capacity
of 6− 2

√
6− ε in [t, t+ 1).

7. CONCLUSION
We have investigated the power of migration in online

machine minimization. Surprisingly, it has turned out that,
without allowing migration, the online machine requirement
is unbounded in m even when m = 3 whereas with mi-
gration O(m logm) machines suffice for any m [4]. A tight

upper bound remains open. The currently best upper bound
we are aware of, is O(log ∆), with ∆ being the largest ratio
of processing times, and it is obtained by a non-preemptive
algorithm [11].

We remark that our lower bound leaves open if for m = 2
there is an online non-migratory algorithm using O(1) ma-
chines. Note that such an algorithm exists if we allow migra-
tion [4], but it is ruled out if we do not allow to preempt [11].

We also presented online algorithms for restricted
instances, namely loose, agreeable, and laminar in-
stances, that that construct non-migratory schedules using
only O(m logm) (or even O(m)) machines. It remains an

open question whether o(m logm) machines suffice for lam-
inar instances when migration is not allowed.

8. REFERENCES
[1] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to

manage energy and temperature. J. ACM, 54(1), 2007.

[2] A. Borodin and R. El-Yaniv. Online Computation and
Competitive Analysis. Cambridge University Press,
1998.

[3] H. Chan, T. W. Lam, and K. To. Nonmigratory online
deadline scheduling on multiprocessors. SIAM J.
Comput., 34(3):669–682, 2005.

[4] L. Chen, N. Megow, and K. Schewior. An
O(logm)-competitive algorithm for online machine
minimization. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 155–163, 2016.

[5] N. R. Devanur, K. Makarychev, D. Panigrahi, and
G. Yaroslavtsev. Online algorithms for machine
minimization. CoRR, abs/1403.0486, 2014.

[6] W. A. Horn. Some simple scheduling algorithms. Naval
Research Logistics Quarterly, 21(1):177–185, 1974.

[7] B. Kalyanasundaram and K. Pruhs. Eliminating
migration in multi-processor scheduling. J.
Algorithms, 38(1):2–24, 2001.

[8] G. Koren, E. Dar, and A. Amir. The power of
migration in multiprocessor scheduling of real-time
systems. SIAM Journal on Computing, 30(2):511–527,
2000.

[9] T. W. Lam and K.-K. To. Trade-offs between speed
and processor in hard-deadline scheduling. In
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 623–632, 1999.

[10] C. A. Phillips, C. Stein, E. Torng, and J. Wein.
Optimal time-critical scheduling via resource
augmentation. Algorithmica, 32(2):163–200, 2002.

[11] B. Saha. Renting a cloud. In IARCS Conference on
Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pages 437–448, 2013.

