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Abstract. We consider scheduling on an unreliable machine that may experience unexpected
changes in processing speed or even full breakdowns. Our objective is to minimize

∑
wjf(Cj) for

any nondecreasing, nonnegative, differentiable cost function f(Cj). We aim for a universal solution
that performs well without adaptation for all cost functions for any possible machine behavior. We
design a deterministic algorithm that finds a universal scheduling sequence with a solution value
within 4 times the value of an optimal clairvoyant algorithm that knows the machine behavior in
advance. A randomized version of this algorithm attains in expectation a ratio of e. We also show
that both performance guarantees are best possible for any unbounded cost function. Our algorithms
can be adapted to run in polynomial time with slightly increased cost. When jobs have individual
release dates, the situation changes drastically. Even if all weights are equal, there are instances
for which any universal solution is a factor of Ω(logn/ log logn) worse than an optimal sequence
for any unbounded cost function. Motivated by this hardness, we study the special case when the
processing time of each job is proportional to its weight. We present a nontrivial algorithm with a
small constant performance guarantee.
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1. Introduction. Traditional scheduling theory assumes in its standard models
that jobs are processed on ideal machines that provide the same constant performance
throughout time. While in some settings this is a good enough approximation of real
life machine behavior, in other situations this assumption is decidedly unreasonable.
A machine, for example, can be a server shared by multiple users; if other users
suddenly increase their workload, this can cause a general slowdown, or even worse,
the machine may become unavailable for a given user due to priority issues. In other
cases, our machine may be a production unit that can break down altogether and
remain offline for some time until it is repaired. In these cases, it is crucial to have
schedules that take such unreliable machine behavior into account.
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Different machine behaviors will typically lead to very different optimal schedules.
This creates a burden on the scheduler who has to periodically recompute the schedule
from scratch. In some situations, recomputing the schedule may not even be feasible:
when submitting a set of jobs to a server, a user can choose the order in which it
presents these jobs but cannot alter this ordering later on. Therefore, it is desirable
in general to have a fixed master schedule that will perform well regardless of the
actual machine behavior. In other words, we aim for a universal schedule that, for
any given machine behavior, has cost close to that of an optimal clairvoyant algorithm.

In this paper we initiate the study of universal scheduling by considering the
problem of sequencing jobs on a single unreliable machine to minimize various com-
pletion time dependent cost functions. Our main result is an algorithm for computing
a universal sequence that is always a constant factor away from an optimal schedule
computed by a clairvoyant algorithm. In particular, it computes the same universal
sequence independently of the cost function. Thus, we compute a universal solution
that has the same small worst case guarantee for any machine behavior and any non-
decreasing, nonnegative, differentiable cost function. We complement this by showing
that our result is best possible among universal schedules for unreliable machines. In
fact, we give a matching lower bound that holds even for any unbounded nonnegative
cost function. Furthermore, we study the case in which jobs have individual release
dates. Here we provide an almost logarithmic lower bound on the performance of uni-
versal schedules (again for any unbounded nonnegative cost function), thus showing a
drastic difference with respect to the setting without release dates. Finally, we design
a nontrivial algorithm with constant performance for the interesting special case of
scheduling jobs with release dates and proportional weights.

Our hope is that our work stimulates the study of universal solutions (with re-
spect to unreliable machine behavior or different cost functions) for other scheduling
problems, and, more broadly, the study of more realistic scheduling models. In the
rest of this section we introduce our model formally, discuss related work, and explain
our contributions in detail.

1.1. The model. We are given a job set J with processing times pj ∈ Q+ and
weights wj ∈ Q+ for each job j ∈ J . Using a standard scaling argument, we can
assume w.l.o.g. that wj ≥ 1 for j ∈ J . The problem is to find a sequence π of jobs to
be scheduled on a single machine that minimizes

∑
wjf(Cj) for any nondecreasing,

nonnegative, differentiable1 cost function f(Cj). The jobs are processed in the prefixed
order π no matter how the machine may change its processing speed or whether it
becomes unavailable. In case of a machine breakdown the currently running job
is preempted and will resume processing at any later moment when the machine
becomes available again. We may denote our problem as the universal scheduling
variant of 1||∑wjf(Cj), using the standard scheduling notation [12]. We analyze the
worst case performance of an algorithm by comparing the solution value it provides
with that of an optimal clairvoyant algorithm that knows the machine behavior in
advance, and that is even allowed to preempt jobs at any time.

We also consider the problem 1|rj , pmtn|∑wjf(Cj) in which each job j ∈ J has
an individual release date rj ≥ 0, which is the earliest point in time when it can
start processing. In this model, it is necessary to allow job preemption; otherwise no
constant performance guarantee is possible, as simple examples show; see Example 2

1In fact, the assumption that f is differentiable is slightly stronger than necessary. However, it
covers natural cost functions and avoids unnecessary technical details.
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in section 4. We allow preemption in the actual scheduling procedure, however, as
in the case without release dates, we aim for nonadaptive universal solutions. That
is, our solution will still be a total ordering of jobs that we interpret as a priority
order. At any point in time we work on the highest priority job that has not yet
finished and that has already been released. This procedure is called preemptive
list scheduling [14, 38]. Note that a newly released job will preempt the job that is
currently running if it comes earlier than the current job in the ordering.

1.2. Related work. The concept of universal solutions, that perform well for
every single input of a superset of possible inputs, has been used already decades ago
in different contexts, such as in hashing [5] and routing [42]. The latter is also known
as oblivious routing and has been studied extensively; see [36] for a state-of-the-art
overview. Jia et al. [18] considered universal approximations for TSP, Steiner tree,
and set cover problems. All this research falls broadly into the field of robust opti-
mization [4]. The term robust is not used consistently in the literature. In particular,
the term robust scheduling refers mainly to robustness against uncertain processing
times; see, e.g., [26, Chap. 7] and [33]. Here, quite strong restrictions on the input
or weakened notions of robustness are necessary to guarantee meaningful worst case
solutions. We emphasize that our results in this paper are robust in the most con-
servative, classical notion of robustness originating in Soyster [40], also called strict
robustness [31], and in this regard we follow the terminology of universal solutions.

Scheduling with limited machine availability, and more generally with arbitrarily
varying machine capacity or speed, is a subfield of machine scheduling that has been
studied for more than twenty years; see, e.g., the surveys [37, 29, 9, 32]. Different
objective functions, stochastic fluctuations, as well as offline problems with known
machine availability periods have been investigated. Nevertheless, only a few results
are known for min-sum objectives, and none of these deal with release dates. They
mainly address the objective of minimizing the total weighted completion time and
the extreme case of full machine breakdowns. In the setting when a job can continue
processing after a breakdown without restarting it and if all jobs have equal weights,
a simple interchange argument shows that sequencing jobs in nondecreasing order of
processing times is optimal for

∑
wjCj , as it is in the setting with continuous machine

availability [39]. Obviously, this result immediately transfers to the universal setting
in which machine breakdowns or changes in processing speeds are not known be-
forehand. The natural generalization of this algorithm to the weighted setting, that
is, scheduling jobs in nonincreasing order of ratios of weight over processing time,
is known as Smith’s rule [39] and yields an optimal schedule on an ideal machine.
However, when the machine is unreliable, simple examples show that Smith’s rule
does not yield a constant performance guarantee. This is true even if there is just
a single machine breakdown [28]. In fact, this special problem is weakly NP-hard
in both models, where a breakdown causes the restart of a preempted job [1, 30]
or does not [28]. Several approximation results have been derived for both mod-
els; see [28, 30, 43, 20, 34, 23]. Recently, these results were complemented by fully
polynomial-time approximation schemes (FPTAS); see [24, 21, 10]. The special class
of instances, in which the processing time of each job is proportional to its weight,
has been studied in [43]. The authors showed that scheduling in nonincreasing order
of processing times (or weights) yields a 2-approximation for preemptive scheduling
without restarts. However, for the general problem with arbitrary job weights, it
remained an open question [43] whether a polynomial-time algorithm with constant
approximation ratio exists, even without release dates. Even in this restricted case,
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the problem is strongly NP-hard [43].
The difficulties in handling full breakdowns are avoided when dealing with nonde-

creasing machine speed functions. Even for identical release dates and the objective
of

∑
wjCj it is not clear if the problem is NP-hard. Stiller and Wiese [41] show that

Smith’s rule [39] yields a schedule—a universal schedule, in fact—with a performance
guarantee of exactly (

√
3 + 1)/2 < 1.37. They also show that no universal solution

can achieve a performance guarantee of 1.12 or less.
Recently more general objective functions have been considered. For the most

general formulation of min-sum problems on a single machine with release dates and
preemption, 1|rj , pmtn|∑ fj , where each job may have its individual nondecreasing
cost function fj, Bansal and Pruhs [2] gave a randomized O(log log(nP )) approxima-
tion, where P = maxj∈J pj . When all jobs have identical release dates, the approx-
imation factor reduces to 16. This result was improved by Cheung and Shmoys [6],
who give a deterministic primal-dual (2 + ε)-approximation. This result can be ob-
tained also on a machine of varying speed. However, it requires the full knowledge
of the speed function in advance and does not produce a universal sequence. Very
recently, Höhn and Jacobs [16] studied the more restricted problem with a global cost
function 1||∑wjf(Cj) that we consider in this paper. In particular, they analyze the
performance of the universal sequence obtained by Smith’s rule [39] and give tight
guarantees for all convex and all concave functions f .

1.3. Our results. Our main results are algorithms that compute deterministic
and randomized universal sequences for jobs without release dates. They output a
permutation of the jobs such that scheduling the jobs in this order will yield for any
machine behavior and all considered cost functions f simultaneously a solution that
remains within multiplicative factor 4 and within multiplicative factor e in expectation
of any feasible schedule. Our upper bounds are best possible for universal sequenc-
ing on unreliable machines, even when the cost function is fixed. To show this, we
establish an interesting connection between our problem and a certain online bidding
problem [7]. Furthermore, our algorithms can be adapted such that they have running
time polynomial in the input size and 1/ε, ε > 0, at the cost of an ε-increase in the
performance guarantee. Furthermore, we show that our algorithms can be adapted to
solving more general problem instances with certain types of precedence constraints
without losing performance quality.

It may seem rather surprising that universal sequences with constant performance
guarantee should always exist. In fact, our results immediately answer affirmatively a
major question that had remained open in the area of offline scheduling with limited
machine availability subject to minimizing

∑
wjCj : whether there exists a constant

factor approximation algorithm that schedules jobs (not necessarily universally) on a
machine having multiple unavailable periods that are known in advance.

To derive our results, we study the objective of minimizing the total weight of
uncompleted jobs at any point in time. First, we show that the performance guarantee
for scheduling on an unreliable machine is given directly by a bound on the ratio
between the remaining weight of our algorithm and that of an optimal clairvoyant
algorithm at every point in time on an ideal machine that is continuously processing
at constant speed. Then, we devise an algorithm that computes the job sequence
iteratively backwards: in each iteration we find a subset of jobs with largest total
processing time subject to a bound on their total weight. The bound is doubled
in each iteration. Our approach is related to, but not equivalent to, an algorithm of
Hall et al. [14] for online scheduling on ideal machines—the doubling there happens in
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the time horizon. Indeed, this type of doubling strategy has been applied successfully
in the design of algorithms for various problems; the interested reader is referred
to the excellent survey of Chrobak and Kenyon-Mathieu [8] for a collection of such
examples.

The problem of minimizing the total weight of uncompleted jobs at any time
was previously considered by Becchetti et al. [3] in the context of online scheduling
to minimize flow time on a single machine; there, a constant approximation algo-
rithm is presented with a worst case bound of 24. Our results imply an improved
deterministic (4 + ε)-approximation for this problem, complemented by a random-
ized (e+ ε)-approximation. Furthermore, we show that the same guarantee holds for
the setting with release dates. On an ideal machine, this implies a universal solution
for minimizing

∑
wjf(Cj) for any cost function f under consideration. Unfortu-

nately, unlike in the case without release dates, this does not translate into the same
performance guarantee for an unreliable machine. In fact, when jobs have individual
release dates, the problem changes drastically.

In section 4 we show that in the presence of release dates, even if all weights
are equal, there are instances for which the ratio between the value of any universal
solution and that of an optimal schedule is Ω(logn/ log logn). This lower bound holds
for any unbounded nonnegative cost function. Our proof relies on the classical theorem
of Erdős and Szekeres [11] on the existence of long increasing/decreasing subsequences
of a given sequence of numbers. Motivated by this hardness, we study the class of
instances where the processing time of each job is proportional to its weight. We
present a nontrivial algorithm and prove a performance guarantee of 5. This algorithm
yields directly an O(maxk∈J

wk

pk
/mink∈J

wk

pk
)-approximation when applied to general

problem instances. Additionally, we give a lower bound of 3 for all universal solutions
in the special case.

2. Preliminaries and key observations. We call a machine ideal if it runs
continuously at constant speed. By a standard scaling argument we may assume that
this is unit speed. Given an ideal machine and a sequence π, the completion time Cπ

j

of job j when applying preemptive list scheduling to π is uniquely defined. Its cost is

f(Cπ
j ) =

∫ Cπ
j

0

f ′(t)dt =
∫ ∞

0

χπ
j (t)f

′(t)dt ,

where χπ
j (t) is the indicator function which is 1 if and only if job j is unfinished by

time t in the schedule according to π. For some point in time t ≥ 0 let Wπ(t) denote
the total weight of jobs that are not yet completed by time t according to π, that
is, Wπ(t) :=

∑
j∈J χπ

j (t)wj . Then,

∑
j∈J

wjf(C
π
j ) =

∫ ∞

0

Wπ(t)f ′(t)dt.(1)

Clearly, breaks or fluctuations in the speed of the machine affect the completion
times. To describe a particular machine behavior, let μ : R+ → R+ be a nondecreas-
ing continuous function, with μ(t) being the aggregated amount of processing time
available on the machine up to time t. We refer to μ as the machine capacity function.
If the derivative of μ at time t exists, it can be interpreted as the speed of the machine
at that point in time. An ideal machine that is processing continuously at unit speed
has a machine capacity function μ(t) = t, t ≥ 0.
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For a given capacity function μ, let S(π, μ) denote the single machine schedule

when applying preemptive list scheduling to permutation π, and let C
S(π,μ)
j denote

the completion time of job j in this particular schedule. For some point in time t ≥ 0,
let WS(π,μ)(t) denote the total weight of jobs that are not yet completed by time t in
schedule S(π, μ). Then,

∑
j∈J

wjf(C
S(π,μ)
j ) =

∫ ∞

0

WS(π,μ)(t)f ′(t)dt .

For t ≥ 0 let WS∗(μ)(t) := minπ W
S(π,μ)(t).

Observation 1. For a given machine capacity function μ and a cost function f ,∫ ∞

0

WS∗(μ)(t)f ′(t)dt(2)

is a lower bound on the objective value
∑

j∈J wjf(C
S
j ) of any schedule S.

We aim for a universal sequence of jobs π such that, no matter how the machine
behaves, the objective value of the corresponding schedule S(π, μ) is within a constant
factor of the optimum.

Lemma 1. Let f be a fixed unbounded cost function and c > 0. Let π be a

sequence of jobs with arbitrary release dates. The objective value
∑

j∈J wjf(C
S(π,μ)
j )

is at most c times the optimum value for every machine capacity function μ if and
only if

WS(π,μ)(t) ≤ cWS∗(μ)(t) for all t ≥ 0.(3)

Furthermore, condition (3) is sufficient for guaranteeing the performance bound c for
all (not necessarily unbounded) cost functions.

Notice that condition (3) is independent of the cost function f . Thus it implies
the same performance guarantee for sequence π for all considered cost functions f
simultaneously.

Proof. The “if” part is clear for all cost functions, since for any machine capacity
function μ we have

∑
j∈J

wjf(C
S(π,μ)
j ) =

∫ ∞

0

WS(π,μ)(t)f ′(t)dt ≤ c

∫ ∞

0

WS∗(μ)(t)f ′(t)dt ,

and Observation 1 applies.
We prove the “only if” part by contradiction. Assume that WS(π,μ)(t0) >

cWS∗(μ)(t0) for some t0 and μ. Consider the following machine capacity function:

μ̄(t) =

⎧⎪⎨
⎪⎩
μ(t) if t ≤ t0,

μ(t0) if t0 < t < t1,

∞ if t ≥ t1,

which equals μ up to time t0, then remains constant at value μ̄(t) = μ(t0) for the
time interval [t0, t1), and then increases to infinity2 such that all remaining jobs finish

2The extreme increase from t1 onwards is not imperative. Any function that guarantees that the
remaining processing volume can be finished by t2 with f(t2) ≤ (1 + ε)f(t1), for ε > 0, is sufficient
but makes the presentation unnecessarily technical.
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at t1. The objective value for π under the modified machine behavior μ̄, is∑
j∈J

wjf(C
S(π,μ̄)
j ) =

∑
j∈J:

C
S(π,μ)
j ≤t0

wjf(C
S(π,μ)
j ) + f(t1) ·WS(π,μ)(t0).(4)

On the other hand, let π∗ be a sequence of jobs with WS(π∗,μ̄)(t0) = WS∗(μ̄)(t0).
Then, ∑

j∈J

wjf(C
S(π∗,μ̄)
j ) =

∑
j∈J:

C
S(π∗,μ)
j ≤t0

wjf(C
S(π∗,μ)
j ) + f(t1) ·WS∗(μ)(t0).(5)

As f is an unbounded, nonnegative, nondecreasing function, f(t1) tends to infinity
for growing t1. Then, the ratio of (4) and (5) is dominated byWS(π,μ)(t0)/W

S∗(μ)(t0),
which is larger than c and thus gives a contradiction.

In the case that all release dates are equal, we can strengthen the previous lemma
and show that approximating the min-sum objective value on a machine with unknown
processing behavior is equivalent to approximating the total remaining weight at any
point in time on an ideal machine with μ(t) = t, t ≥ 0. To that end, we first observe
that scheduling according to sequence π on an ideal machine yields for each j,

Cπ
j :=

∑
k:π(k)≤π(j)

pk .

The completion time under machine capacity function μ is

C
S(π,μ)
j = min{t | μ(t) ≥ Cπ

j }.
Observation 2. For any machine capacity function μ and any sequence π of

jobs without release dates,

WS(π,μ)(t) = Wπ(μ(t)) for all t ≥ 0.

For μ(t) = t let W ∗(t) := WS∗(μ)(t). With Observation 2 we can significantly
strengthen the statement of Lemma 1.

Lemma 2. Let f be a fixed unbounded cost function and c > 0. Let π be a sequence

of jobs with equal release dates. Then, the objective value
∑

j∈J wjf(C
S(π,μ)
j ) is at

most c times the optimum for all machine capacity functions μ if and only if

Wπ(t) ≤ cW ∗(t) for all t ≥ 0.

The weight condition implies the performance guarantee c for all (not necessarily
unbounded) cost functions.

Notice that it is crucial for Lemma 2 that all release dates are equal; otherwise,
Observation 2 is simply not true. We illustrate this fact by a small example.

Example 1. At time 0 we release n − 1 jobs with pj = 1 and wj = 1, for j =
1, . . . , n− 1. At time n− 1 we release job n with pn = 1 and wn = 2n. Consider the
sequence π = 1, 2, . . . , n−1, n and time t = n. It is easy to check that Wπ(t) = W ∗(t)
for any t. In particular, for t′ = n− 1 we have Wπ(t′) = W ∗(t′) = wn.

However, when considering an unreliable machine with machine capacity func-
tion μ and the corresponding schedule S(π, μ), the situation changes drastically. Let μ
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be such that there is a full breakdown at [(n − 2), (n − 1)] followed by a second
long breakdown beginning at time n. At time t = n, our solution π has remaining
weight WS(π,μ)(t) = wn, which equals Wπ(μ(t)) with μ(t) = t′. However, an opti-
mal solution executes job n in [n − 1, n), instead of job n − 1, and has remaining
weight WS∗(μ)(t) = 1 �= W ∗(μ(t)). Obviously, Observation 2 does not hold if jobs
have arbitrary release dates.

3. Universal scheduling without release dates. In what follows we study
the universal scheduling problem for jobs without release dates.

3.1. Upper bounds. In what follows we use for a subset of jobs J ′ ⊆ J the
notation p(J ′) :=

∑
j∈J′ pj and w(J ′) :=

∑
j∈J′ wj . Based on key Lemma 2, we aim at

approximating the minimum total weight of uncompleted jobs at any point in time on
an ideal machine; that is, we approximate the value of W ∗(t) for all values of t ≤ p(J)
for a machine with capacity function μ(t) = t, t ≥ 0. In our algorithm we do so by
solving the problem to find the set of jobs that has maximum total processing time
and total weight within a given bound. By sequentially doubling the weight bound,
a sequence of job sets is obtained. Jobs in job sets corresponding to smaller weight
bounds are to come later in the schedule, breaking ties arbitrarily.

Algorithm Double:
1. For i ∈ {0, 1, . . . , 
logw(J)�}, find a subset J∗

i of jobs of maximum total
processing time p(J∗

i ) such that the total weight satisfies w(J∗
i ) ≤ 2i. Notice

that J∗
�logw(J)	 = J .

2. Construct a permutation π as follows. Start with an empty sequence of jobs.
For i = 
logw(J)� down to 0, append the jobs in J∗

i \⋃i−1
k=0 J

∗
k in any order

at the end of the sequence.

Theorem 1. For every scheduling instance, Double produces a permutation π

such that the objective value
∑

j∈J wjf(C
S(π,μ)
j ) is less than 4 times the optimum for

all machine capacity functions μ and all considered cost functions f simultaneously.
Proof. Using Lemma 2, it is sufficient to show that Wπ(t) < 4W ∗(t) for all t ≥ 0.

Let t ≥ 0, and let i be minimal such that p(J∗
i ) ≥ p(J) − t. By construction of π,

only jobs j in
⋃i

k=0 J
∗
k have a completion time Cπ

j > t. Thus,

Wπ(t) ≤
i∑

k=0

w(J∗
k ) ≤

i∑
k=0

2k = 2i+1 − 1.(6)

In case i = 0, the claim is trivially true since wj ≥ 1 for any j ∈ J , and thus W ∗(t) =
Wπ(t). Suppose i ≥ 1; then by our choice of i, it holds that p(J∗

i−1) < p(J) − t.
Therefore, in any sequence π′, the total weight of jobs completing after time t is larger
than 2i−1, because otherwise we get a contradiction to the maximality of p(J∗

i−1).
That is, W ∗(t) > 2i−1. Together with (6) this concludes the proof.

Notice that the algorithm takes exponential time since finding the subsets of
jobs J∗

i is a knapsack problem and, thus, NP-hard [22]. On the other hand, job sets J∗
i

can be found in pseudopolynomial time by straightforward dynamic programming. We
can reduce the running time to polynomial time at the cost of slightly increasing the
performance bound.
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We adapt the algorithm by computing, instead of J∗
i , a subset of jobs Ji of total

weight w(Ji) ≤ (1 + ε)2i and processing time

p(Ji) ≥ max{p(J ′) | J ′ ⊆ J and w(J ′) ≤ 2i}.

This can be done in time polynomial in the input size and 1/ε, adapting, e.g., the
FPTAS by Ibarra and Kim [17] for knapsack in the following way. In iteration i,
let B := 2i denote the bound on the total weight. For a given ε > 0, fix a scal-
ing parameter K = εB/n and round job weights as well as the weight bound such
that w′

j = �wj/K, for any j ∈ J , and B′ = �B/K. Notice that w′
j > wj/K − 1.

Now, we apply a standard dynamic program for knapsack on the modified instance
that computes a solution set J ′ ⊆ J in running time O(nB′) = O(n2/ε). The total
weight of J ′ is

∑
j∈J′

wj <
∑
j∈J′

K(w′
j + 1) ≤ KB′ +Kn ≤ B + εB .

The optimal solution of the scaled instance has total processing time p(J ′) ≥ p(J∗
i )

since the scaling only weakened the capacity constraint.
The subsets Ji obtained in this way are turned into a sequence π′ as in Algorithm

Double.
Theorem 2. Let ε > 0. For every scheduling instance, we can construct a

permutation π in time polynomial in the input size and 1/ε such that the objective

value
∑

j∈J wjf(C
S(π,μ)
j ) is less than 4+ε times the optimum for all machine capacity

functions μ and all considered cost functions f simultaneously.
Proof. Again, by Lemma 2 it is sufficient to prove that Wπ(t) < (4+ ε)W ∗(t) for

all t ≥ 0. Instead of inequality (6) we get the slightly weaker bound

Wπ′
(t) ≤

i∑
k=0

w(Jk) ≤
i∑

k=0

(
1 +

ε

4

)
2k =

(
1 +

ε

4

)
(2i+1 − 1) < (4 + ε) 2i−1.

Moreover, the lower bound W ∗(t) > 2i−1 still holds.
We can improve Theorem 1 by adding randomization to our algorithm in a quite

standard fashion. Instead of the fixed bound of 2i on the total weight of job set J∗
i in

iteration i ∈ {0, 1, . . . , 
lnw(J)�} we use the randomly chosen bound Xei, where X =
eY and Y is picked uniformly at random from [0, 1] before the first iteration.

Notice that the same arguments as in Lemma 2 hold for randomized algorithms
and their expected values of remaining weight and their min-sum objective values.

Corollary 1. Let f be a fixed unbounded cost function and c > 0. Let π be a

random sequence of jobs. Then, the expected objective value E[
∑

j∈J wjf(C
S(π,μ)
j ) ]

is at most c times the optimum value for all machine capacity functions μ if and only
if E [Wπ(t) ] ≤ cW ∗(t) for all t ≥ 0. The weight condition implies the performance
guarantee c also for bounded cost functions.

Theorem 3. For every scheduling instance, the randomized algorithm produces
a random permutation π(X) such that E[Wπ(X)(t) ] < eW ∗(t)− 1 for all t ≥ 0.

Proof. Given X and t, let i ∈ N be minimal such that p(J∗
i ) ≥ p(J)− t. For i = 0

the claim is trivially true. Consider the case i ≥ 1. By the same arguments as in the
proof of Theorem 1, we have W ∗(t) > Xei−1, and therefore i < �ln(W ∗(t)/X)+ 1.
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Similar to (6) we have, for any t,

E

[
Wπ(X)(t)

]
≤ E

[
i∑

k=0

Xei

]
= E

[
X · e

i+1 − 1

e− 1

]
< E

[
X · e


ln(W∗(t)/X)�+2 − 1

e− 1

]

=
1

e− 1
· E

[
X · e
ln(W∗(t)/X)�−ln(W∗(t)/X)+2 · W

∗(t)
X

− X

]

=
e

e− 1
·W ∗(t) · E

[
e
ln(W

∗(t)/X)�−ln(W∗(t)/X)+1
]
− 1

e− 1
· E [X ]

=
e

e− 1
·W ∗(t) · E

[
e
ln(W

∗(t)/X)�−ln(W∗(t)/X)+1
]
− 1 .

Here, we used the fact that E [X ] =
∫ 1

0
exdx = e−1. With ln(W ∗(t)/X) = lnW ∗(t)−

Y , we let Z denote the exponent of the exponential function, i.e., Z := 1−((lnW ∗(t)−
Y )−�lnW ∗(t)−Y ), which is 1 minus the fractional part of lnW ∗(t)−Y . Then Z is a
random variable distributed like Y uniformly in [0, 1]. Thus, E

[
eZ

]
= E [X ] = e−1,

and Corollary 1 completes the proof.
The algorithm can be adapted in the same way as the deterministic algorithm to

run in polynomial time; see the proof of Theorem 2. This gives the following improved
result.

Theorem 4. Let ε > 0. For every scheduling instance, randomized Double

constructs a permutation π in time that is polynomial in the input size and 1/ε such

that
∑

j∈J wjf(C
S(π,μ)
j ) is in expectation less than e+ ε times the optimum value for

all machine capacity functions μ and all considered cost functions f simultaneously.

3.2. Lower bounds. In this section we show a connection between the perfor-
mance guarantee for sequencing jobs on a single machine without release dates and
an online bidding problem investigated by Chrobak et al. [7]. This allows us to prove
tight lower bounds for our problem.

In online bidding we are given a universe U = {1, . . . , n} of possible target values.
A bidding algorithm has to submit bids one after another until it gives a number at
least as large as the unknown target value T ∈ U . The cost of the solution is the
sum of all submitted bids. An algorithm producing the bid set B ⊆ U is said to
be α-competitive if

(7)
∑

b∈B : b<T

b + min
b∈B : b≥T

b ≤ αT for all T ∈ U .

Chrobak et al. [7] gave lower bounds of 4 − ε and e − ε, for any ε > 0, for
deterministic and randomized algorithms, respectively.

Theorem 5. For any ε > 0 and any unbounded cost function f , there exists an
instance of the universal scheduling problem on which the performance guarantee of
any deterministic schedule is at least 4− ε. The performance ratio of any randomized
schedule is at least e− ε with respect to an oblivious adversary.

Proof. Take an instance of the online bidding problem and create the following
instance of the scheduling problem: For each j ∈ U create job j with weight wj = j
and processing time pj = jj . Consider any permutation π of the jobs in U . For
any j ∈ U , let k(j) be the largest index such that πk(j) ≥ j. Since the total processing

time of jobs {πk | k = k(j) + 1, . . . , n} is at most
∑j−1

i=1 pi < pj, at time t = p(U)− pj
we have Wπ(t) =

∑n
k=k(j) wπk

, while W ∗(t) = wj . If sequence π yields a performance
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guarantee of α, then it holds by Lemma 2 that

(8)
n∑

k=k(j)

πk ≤ α j for all j ∈ U .

From sequence π we extract another sequence of jobs:

W1 = πn,

Wk = argmax
i∈U

{
π−1(i) | i > Wk−1

}
.

Define the bid set W = {W1,W2, . . .}. By definition Wi+1 > Wi, and all j with
π−1(Wi+1) < π−1(j) < π−1(Wi) have weight less than Wi. Therefore, for all j ∈ U
we have {i ∈ W | i < j}∪min {i ∈ W | i ≥ j} ⊂ {πk(j), . . . , πn}. Hence, if π achieves
a performance guarantee of α, then

(9)
∑

i∈W : i<j

i + min
i∈W : i≥j

i ≤
n∑

k=k(j)

πk ≤ α j for all j ∈ U ;

that is, the bid set W induced by the sequence π must be α-competitive. Since
there is a lower bound of 4− ε for the competitiveness of deterministic strategies for
online bidding, the same bound follows for the performance guarantee of deterministic
universal schedules.

The same approach yields the lower bound for randomized strategies. In this case,
for online bidding, B is a probability distribution over all subsets of U . Analogous
to (7), B is said to be α-competitive if

(10) E

[ ∑
b∈B : b<T

b+ min
b∈B : b≥T

b

]
≤ αT for all T ∈ U .

In the scheduling setting, analogous to (8), if the random permutation π yields per-
formance guarantee α, then

(11) E

⎡
⎣ n∑
k=k(j)

πk

⎤
⎦ ≤ α j for all j ∈ U .

In the same way a single schedule induces a single bid set, a random sequence of
jobs π induces a probability distribution W over bid sets, and if π has performance
guarantee α, then

(12) E

⎡
⎣ ∑
i∈W : i<j

i+ min
i∈W : i≥j

i

⎤
⎦ ≤ E

⎡
⎣ n∑
k=k(j)

πk

⎤
⎦ ≤ α j for all j ∈ U .

The lower bound of e−ε for randomized strategies for online bidding implies the same
lower bound for the performance guarantee of randomized universal schedules.

3.3. Universal scheduling with precedence constraints. A natural gener-
alization of the universal sequencing problem requires that jobs must be sequenced
in compliance with given precedence constraints. These constraints define a partial
order (J,≺) on the set of jobs J .
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Clearly, the lower bounds above hold also in the more general setting. Fur-
thermore, we can adapt our algorithm to a certain extent. To handle precedence
constraints we need to adapt the knapsack-related subroutine of our algorithm to the
problem with a given partial order of jobs. This subproblem coincides with the par-
tially ordered knapsack problem (POK) which is strongly NP-hard [19] and also hard
to approximate [13]. On the positive side, FPTASes exist for several POK problems
with special partial orders, including directed out-trees, two-dimensional orders, and
the complement of chordal bipartite orders [19, 25].

Theorem 6. Let ε > 0. Consider the universal sequencing problem with prece-
dence constraints (J,≺). If there is an FPTAS for POK for partial orders of the same
type, then for any ε > 0 we can construct a permutation π respecting (J,≺) in time

polynomial in the input size and 1/ε such that the objective value
∑

j∈J wjf(C
S(π,μ)
j )

is less than 4+ ε times the optimum for all machine capacity functions μ and all cost
functions f simultaneously. A randomized algorithm finds a sequence with expected
objective value bounded by e+ ε times the optimum value in the same running time.

Proof. We make use of the following trivial observation: Let (N,≺) be a par-
tial order and (N,≺′) be the reverse partial order. Then, given a linear extension
of (N,≺), the reverse of this ordering is a feasible linear extension of (N,≺′).

Now consider the universal sequencing problem with a given partial order (J,≺)
and its reverse order (J,≺′). We apply a slightly modified version of Double. To
compute subsets J∗

i with bounded total weight and maximal processing time, we
use the FPTAS for the corresponding special case of POK for (J,≺′). Obviously,
the sequence of sets 0, 1, 2 . . . respects the given partial order (J,≺′). The algorithm
appends the sets in the reverse order, and therefore the final sequence is a linear
extension of (J,≺) if the jobs of each set are appended accordingly. Now, the analysis
given in section 3.1 applies directly.

4. Universal scheduling with release dates. In this section we study the
universal scheduling problem for jobs with arbitrary release dates. As mentioned in
the introduction, we cannot hope for a universal sequence of jobs that, when processed
nonpreemptively in exactly this order, yields a constant performance guarantee for
all machine capacity functions μ. This is true not only when competing with an
optimal solution that may preempt jobs, but also when the optimum is not allowed
to preempt. We visualize this by the following simple example.

Example 2. The instance has two jobs: a long job with r1 = 0, p1 = L, and
w1 = ε and a short job with r2 = ε and w2 = p2 = 1. By Lemma 1, any algorithm
must start working on the first job immediately at time 0, for otherwise the jobs cannot
be completed by time L + 1. On the other hand, if we start working on the first job
at time 0 and there is no machine breakdown, the solution has cost L(1 + ε) + 1. The
optimal cost is Lε + (1 + ε)2, when the optimal solution is not allowed to preempt,
and Lε + 1 + 2ε otherwise. In both cases, when ε is small, the ratio of the costs is
growing linearly in L and thus arbitrarily large.

Therefore, we allow preemption in the actual scheduling procedure, although, as in
the case without release dates, we aim for nonadaptive universal solutions. Thus, our
universal sequence specifies a priority order of jobs which is executed by a preemptive
list scheduling procedure: At any point in time we work on the job of highest priority
that has not finished yet and that has already been released.

Algorithm Double, which aims to minimize the total remaining weight, can be
adapted to the setting with release dates with the same performance guarantee, as
we show in section 4.1. This implies by Lemma 1 that, on an ideal machine, one se-
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quence of jobs yields the same performance guarantee for all considered cost functions
simultaneously. Unfortunately, this does not hold on unreliable machines. In contrast
to the setting without release dates, approximation ratios on an ideal machine do not
translate directly into a performance guarantee of the universal sequencing strategy
for an unreliable machine; see section 2. In fact, universal scheduling with release
dates cannot be approximated within a constant ratio, as we show in section 4.2.
In section 4.3, we consider the special case in which jobs have proportional weights.
We provide a nontrivial algorithm with small constant performance guarantee ac-
companied with lower bounds. This algorithm yields an O(maxk∈J

wk

pk
/mink∈J

wk

pk
)-

approximate universal solution when applied to the general scheduling problem with
arbitrary weights.

4.1. Universal schedules on an ideal machine. Consider scheduling on an
ideal machine with constant speed.

Theorem 7. There is a deterministic polynomial-time algorithm that produces
for any set of jobs J with individual release dates a sequence π such that the total

cost
∑

j∈J wjf(C
S(π)
j ) when applying preemptive list scheduling according to π is less

than 4 + ε times the optimum value for any cost function f . A randomized algorithm
yields the performance guarantee e+ ε.

By Lemma 1 and its natural extension to randomized algorithms, it is sufficient
to give an algorithm that yields the desired performance guarantee for minimizing the
total remaining weight at any time. In the remainder of this section we discuss such
an algorithm.

The following algorithm is an adaptation of Algorithm Double to the setting
with release dates and preemptive list scheduling.

Algorithm Double-R:
1. Compute the earliest possible completion time T .
2. For i ∈ {0, 1, . . . , 
logw(J)�}, find a feasible schedule Si for J and a maxi-

mum value Δi such that the total weight of late jobs, J∗
i = {j ∈ J |CSi

j >

T − Δi}, completing after due date T − Δi, satisfies w(J∗
i ) ≤ 2i. Notice

that J∗
�logw(J)	 = J .

3. Construct a permutation π as follows. Start with an empty sequence of jobs.
For i = 
logw(J)� down to 0, append the jobs in J∗

i \⋃i−1
k=0 J

∗
k in any order

at the end of the sequence.

As in Double, we want to find for any weight bound 2i a subset of jobs that,
when being placed last in the priority list, covers the longest continuous processing
period at the end of a feasible preemptive schedule. In contrast to the setting without
release dates, we cannot simply consider the total processing time of the last jobs,
because some of these jobs may have been processed earlier in the actual schedule and
have less processing remaining at the end of the schedule. We take this into account
in step 2 of Double-R by maximizing Δi, which corresponds to maximizing the total
processing time of the last jobs in step 2 of Double. In fact, Double-R computes
the same permutation of jobs as Double when all release dates are zero.

Lawler [27] provides a pseudopolynomial-time algorithm for preemptively schedul-
ing jobs with release dates and due dates on a single machine to minimize the total
weight of late jobs. Hence, we can solve step 2 in Double-R by binary search over
the parameter Δi ∈ [Δi−1, T ] using Lawler’s algorithm.

Theorem 8. For every scheduling instance, Double-R produces a sequence π
such that WS(π)(t) < 4WS∗

(t)− 1 for all t ≥ 0 on an ideal machine.
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Proof. Given a schedule S := S(π) and some t ≥ 0, let i be minimal such

that T−Δi ≤ t. By construction, only jobs j in
⋃i

k=0 J
∗
k have a completion time CS

j >

t. To see that, consider a job j ∈ J \⋃i
k=0 J

∗
k . By definition, there exists a feasible

schedule Si such that for all k ∈ J \ J∗
i (including j) we find CSi

k ≤ T −Δi. Applying

preemptive list scheduling allows only jobs in J \ ⋃i
k=0 J

∗
k to be considered earlier

than j. Since there exists a feasible schedule such that all those jobs can be completed
by T −Δi, preemptive list scheduling will also find such a schedule.

Therefore,

(13) WS(t) ≤
i∑

k=0

w(J∗
k ) ≤

i∑
k=0

2k = 2i+1 − 1.

In case i = 0, the claim is trivially true since wj ≥ 1 for any j ∈ J , and thus WS∗
(t) =

WS(t). Suppose i ≥ 1; then by our choice of i, it holds that T −Δi−1 > t. In any
schedule S′, the total weight of jobs completing after time t is larger than 2i−1, because
otherwise we get a contradiction to the maximality of Δi−1. Hence, WS∗

(t) > 2i−1.
Together with (13), this concludes the proof.

As in section 3, randomization on the choice of weight bounds improves the per-
formance.

Corollary 2. For every scheduling instance, the randomized version of Double-

R produces a random sequence π(X) such that E[WS(π(X))(t) ] < eWS∗
(t) − 1 for

all t ≥ 0 on an ideal machine.
Lawler’s algorithm used in step 2 runs in pseudopolynomial time. However, Pruhs

and Woeginger [35] turned it into an FPTAS. Using this algorithm, we get a running
time polynomial in the input size and 1/ε and slightly increased cost.

Theorem 9. Let 0 < ε. For every scheduling instance with release dates,
Double-R constructs a permutation π in time that is polynomial in the input size
and 1/ε such that WS(π)(t) < (4 + ε)WS∗

(t) for all t ≥ 0 on an ideal machine.
A randomized variant yields a random permutation π(X) with E[WS(π(X))(t) ] <
(e+ ε)WS∗

(t) for all t ≥ 0.

4.2. Lower bound. We give a lower bound on the performance guarantee of
universal schedules for jobs with arbitrary release dates and unbounded cost functions.

Theorem 10. There exists an instance with n jobs with release dates, where
the performance guarantee of any universal schedule is Ω(logn/ log logn) for any un-
bounded cost function f , even if all weights are equal.

In our lower bound instance each job j has weight wj = 1, j = 0, 1, . . . , n − 1.
The processing times of the jobs form a geometric series pj = 2j, j = 0, 1, . . . , n− 1,

and they are released in reversed order rj =
∑n−1

i>j 2i =
∑

i>j pi, j = 0, 1, . . . , n− 1.
On an ideal machine, each job can start running at its release date, and it will have
finished processing by the release time of the next job. Therefore, preemptive list
scheduling produces in this case the same schedule for any priority order.

To get some intuition, we briefly discuss two extreme cases, which are visualized
in Figure 1. First, consider the universal job sequence πa = n − 1, n − 2, . . . , 0.
If the machine is unavailable from time 0 on until all jobs are released, we arrive
in a setting without release dates. Suppose that the machine becomes available at
time 2n and then works at full speed. Then at time 2n + pn−1 − 1 = 2n + 2n−1 − 1
the universal schedule still has n uncompleted jobs, whereas an optimal solution has
completed 0, 1, . . . , n− 2, yielding by Lemma 1 a performance guarantee of Ω(n).
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(a) Worst case for sequence πa. (b) Worst case for sequence πb.

Fig. 1. For the sequence πa = n−1, n−2, . . . , 0 and its reverse counterpart πb = 0, 1, . . . , n−1,
we give two breakdown patterns (a) and (b) such that each sequence is optimal for one of them and
arbitrarily bad for the other one.

Fig. 2. Two-dimensional visualization of a universal sequence. Left: Each point represents
one job; x-coordinates correspond to positions in the sequence, and y-coordinates correspond to job
indices. Right: The points have been decomposed into four increasing subsequences. There is a
decreasing subsequence of length 4.

On the other hand, the sequence πb = 0, 1, . . . , n− 1 sees adversarial breakdowns
in the intervals [rj , rj + ε], j = 0, 1, . . . , n − 1, resulting in n uncompleted jobs at
time 2n − 1, whereas the schedule following the sequence πa has job 0 as the only
uncompleted job. Hence a long breakdown of the machine starting at this time yields
again a performance guarantee Ω(n).

In the following we show that there is no way to “interpolate” between these two
extremes. To that end, we rely on a classic theorem of Erdős and Szekeres [11] or,
more precisely, on Hammersley’s proof [15] of this result.

Lemma 3 (Hammersley [15]). Any given sequence of n distinct numbers π1, π2, . . . ,
πn can be decomposed into k increasing subsequences �1, �2, . . . , �k, for some k ≥ 1,
with the following properties:

(i) There exists a decreasing subsequence of length k.
(ii) If πj belongs to �i, then for all j′ > j, if πj′ < πj, then πj′ belongs to �i′

with i′ < i.
The idea is now to view any universal sequence as a permutation of job in-

dices {0, 1, . . . , n − 1} and to decompose it into k increasing subsequences according
to Lemma 3. Figure 2 provides a two-dimensional visualization. The following two
lemmas give lower bounds on the performance guarantee of a universal sequence as
functions of the lengths of increasing and decreasing subsequences in the decompo-
sition. The proofs are based on breakdown patterns, similar to the ones in the two
extreme cases above.

Let |�| denote the length of a sequence �.
Lemma 4. The performance guarantee of a universal schedule that has a decreas-

ing subsequence � is at least |�|.
Proof. Let j be the first job in �, that is, the job with highest priority and smallest
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release date in �. The machine has breakdowns [rj , r0] and [r0+2j − 1, L] for large L.
By time r0 all jobs are released. Then, 2j − 1 time units later, at the start of the
second breakdown, all jobs in � belong to the set of jobs uncompleted by the universal
schedule, whereas an optimal solution can complete all jobs except j. Choosing L
large enough implies the lemma.

Lemma 5. Let �1, �2, . . . , �k be the decomposition of a universal schedule into
increasing subsequences as described in Lemma 3. Then for all i = 1, . . . , k the per-

formance guarantee is at least |�i|+|�i+1|+···+|�k|
1+|�i+1|+···+|�k| .

Proof. For each job j in �i there is a breakdown [rj , rj + ε]. For each job j
in �i+1, . . . , �k there is a breakdown [rj , rj + pj ] = [rj , rj + 2j].

By induction, at any release time t the following is true for all jobs that were
released before t: a job has finished if it belongs to subsequences �1, . . . , �i−1, has
left ε units of processing if it belongs to �i, and has not been processing at all if it
belongs to �i+1, . . . , �k. Consider the first point in time, rj0 , when a job j0 of sub-
sequences �i, . . . , �k is released. This is the first time when a machine breakdown is
incurred. All jobs j′ that had been released earlier belong to subsequences �1, . . . , �i−1

and have completed. Then j0 has highest priority and can start whenever the ma-
chine is available before the next release date. With the given breakdown pattern, j0
can process pj − ε units if it belongs to �i, and it does not run at all if it belongs
to �i+1, . . . , �k. Now consider some release time t. Let j from subsequence �a be
the last job released before t. Property (ii) of Lemma 3 states that all jobs with
higher priority than j and smaller release date (i.e., larger index) than j belong to
some sequence �b with b < a. Combined with the inductive hypothesis, this implies
for a ∈ {1, . . . , i} that j has highest priority because all available higher priority jobs
have finished processing. With the defined breakdown patterns, j fully completes
processing by time t if it belongs to �1, . . . , �i−1, whereas ε time units remain if a = i.
If a ∈ {i + 1, . . . , k}, then the machine is unavailable until time t, which proves the
claim.

As a consequence, at time 2n − 1 the universal schedule has all jobs in �i and all
jobs in �i+1, . . . , �k uncompleted, whereas a schedule exists that leaves the last job
of �i and all jobs in �i+1, . . . , �k uncompleted. Therefore, a breakdown [2n−1, L] for L
large enough implies the lemma.

Proof of Theorem 10. Consider an arbitrary universal scheduling solution and its
decomposition into increasing subsequences �1, . . . , �k as in Lemma 3, and let α be its
performance guarantee.

Using Lemma 5, one can easily prove by backward induction that |�i| ≤ αk−i+1.
Since �1, . . . , �k is a partition of all jobs, we have

n =

k∑
i=1

|�i| ≤
k∑

i=1

αk−i+1 ≤ αk+1.

By Lemma 4, it follows that k ≤ α. Therefore logn = O(α logα) and α =
Ω( logn

log log n ).

4.3. Jobs with proportional weights. Motivated by the negative result in the
previous section, we turn our attention to the special case where jobs have weights
that are proportional to their processing times; that is, there exists a fixed γ ∈ Q+

such that wj = γpj for all j ∈ J . Using a standard scaling argument, we can assume
w.l.o.g. that pj = wj for all j. We provide an algorithm with performance guaran-
tee 5 and prove a lower bound of 3 on the performance guarantee of any universal
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scheduling algorithm. This algorithm applied to the unconstrained problem version
yields an O(maxk∈J

wk

pk
/mink∈J

wk

pk
)-approximate universal solution. In this case, we

ignore the actual weights and assume them to equal processing times.

4.3.1. Upper bounds. We propose and analyze the following algorithm.

Algorithm SortClass:
1. Partition the set of jobs into z := 
log maxj∈J wj� classes such that j belongs

to class Ji, for i ∈ 1, 2, . . . , z, if and only if pj ∈ (2i−1, 2i].
2. Construct a permutation π as follows. Start with an empty sequence of jobs.

For i = z down to 1, append the jobs of class Ji in nondecreasing order of
release dates at the end of π.

Theorem 11. For every scheduling instance, SortClass produces a permuta-

tion π such that the objective value
∑

j∈J wjf(C
S(π,μ)
j ) is at most 5 times the optimum

for all machine capacity functions μ and all considered cost functions f simultane-
ously. This bound is tight.

Proof. Let π be the job sequence computed by SortClass. We can assume
w.l.o.g. that the schedule S(π, μ) obtained from π for some machine capacity func-
tion μ has no idle time. The reason is that idle time can occur only when no unfinished
job is available, because we run preemptive list scheduling. Thus, the schedule S(π, μ′)
for the machine behavior μ′ that equals μ with additional breakdowns during the idle
time periods in S(π, μ) is free of idle times and has exactly the same cost as S(π, μ).
By Lemma 1, it is sufficient to prove

(14) WS(π,μ)(t) ≤ 5WS∗(μ)(t) for all t > 0, for all μ.

Take any time t, and let j ∈ Ji be the job being processed at time t according to
the schedule S(π, μ). We say that a job other than job j is in the stack at time t if
it was processed for a positive amount of time but has not completed before t. The
algorithm needs to complete all jobs in the stack, job j, and jobs that did not start
before t, which have a total weight of at most p(J) − μ(t), the amount of remaining
processing time at time t to be done by the algorithm.

Since jobs within a class are ordered by release times, there is at most one job
per class in the stack at any point in time. Since jobs in higher classes have higher
priority and job j ∈ Ji is processed at time t, there are no jobs in Ji+1, . . . , Jz in the
stack at time t. Thus the weight of the jobs in the stack together with the weight of
job j is at most

∑i
k=1 2

k = 2i+1 − 1. Hence,

(15) WS(π,μ)(t) < 2i+1 + p(J)− μ(t) .

A first obvious lower bound on the remaining weight of any schedule at time t is

(16) WS∗(μ)(t) ≥ p(J)− μ(t) .

For another lower bound, let t′ be the last time before t in which the machine is
available but either it is idle or a job of a class Ji′ with i′ < i is being processed. Note
that t′ is well defined. By definition, all jobs processed during the time interval [t′, t]
are in classes with index at least i, but also they are released in the interval [t′, t]
since at t′ a job of a lower class was processed or the machine was idle. Since at
time t at least one of these jobs is unfinished in S(π, μ), even though the machine
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continuously processed only those jobs, no algorithm can complete all these jobs.
Thus, at time t, an optimal schedule also still needs to complete at least one job with
weight at least 2i−1:

(17) WS∗(μ)(t) ≥ 2i−1 .

Combining (15), (16), and (17) yields (14) and thus the upper bound of the theorem.
To see that the analysis is tight, consider the following instance with k + 3 jobs.

We have k main jobs of geometrically increasing weights and processing times wj =
pj = 2j−1 and release dates rj =

∑
i<j pi for j = 1, . . . , k. We have three additional

jobs a, b, and c with wa = pa = 2k−1 + kε, wb = pb = 2k, and wc = pc = 2k−1 − ε and
release dates ra =

∑
i≤k pk, rb = ra + ε and rc = rb + ε for some 0 < ε < 1.

SortClass transforms the sequence π = 1, 2, . . . , k − 1, k, a, b, c of release date
order into a, b, k, c, k − 1, k − 2, . . . , 2, 1. To show the lower bound, we give a break
of length ε at each release date rj for j = 1, 2, . . . , k. Thus, the jobs j = 1, . . . , k
start processing one after another but get preempted an ε time unit before finishing
because of the release of a higher priority job. At time ra, job a starts processing
and finishes without interruption; it is followed by job b, which gets interrupted at
time t = ra + pa + pb − ε by a huge breakdown. At this time, the only job that has
completed in this schedule is job a. Thus, the remaining weight of unfinished jobs at
time t is 5 · 2k−1 − 1− ε. In contrast, scheduling the sequence 1, 2, . . . , k − 1, k, b, c, a
under such machine breakdowns leaves only job a with weight 2k−1 + kε unfinished
at time t. The lower bound of 5 follows immediately.

We may apply Algorithm SortClass also to general instances with arbitrary job
weights: we simply ignore the actual weights and assume them to equal processing
times. In the case that wj ≥ pj for all j ∈ J , we underestimate the cost of a schedule
by at most a factor of maxk∈J

wk

pk
. In the case that wj < pj for some j ∈ J , we first

multiply all weights by the factor maxk∈J
pk

wk
= 1/mink∈J

wk

pk
to guarantee that wj ≥

pj for all j ∈ J . Then we lose in total a factor of at most maxk∈J
wk

pk
/mink∈J

wk

pk
.

Thus, Theorem 11 directly gives the following guarantee.
Corollary 3. The performance guarantee of SortClass for universal schedul-

ing is O(maxk∈J wk/pk

mink∈J wk/pk
).

4.3.2. Lower bound. We complement this result by a lower bound of 3 on
the performance guarantee of any universal scheduling algorithm for the proportional
weight case.

Theorem 12. For any unbounded cost function f there exists an instance with n
jobs with release dates and wj = pj, for all j ∈ J , where the performance guarantee
of any universal sequence is at least 3.

Proof. Assume by contradiction that there is an algorithm that finds a universal
sequence with performance guarantee strictly smaller than c such that c < 3. We
define a sequence of jobs that must be scheduled by any universal c-approximate
algorithm in a specific order for one specific machine breakdown scenario. But this
permutation will then be worse than c-approximate for another breakdown scenario.

We start by defining and analyzing a number sequence, which we will use later
as the sequence of processing times of the desired scheduling instance. Let a1 = 1,
a2 = c, and for i ≥ 3, ai = (c + 1)(ai−1 − ai−2). Let Si =

∑i
j=1 aj . Note that an

alternative definition for ai, i ≥ 3, is ai = c · ai−1 − Si−2. Indeed, using the definition
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of the sequence yields

ai + Si−1 − (c+ 1) = Si − (c+ 1) = Si − a1 − a2 =

i∑
j=3

aj =

i∑
j=3

(c+ 1)(aj−1 − aj−2)

= (c+ 1)
i−1∑
j=2

aj − (c+ 1)
i−2∑
j=1

aj = (c+ 1)(ai−1 − a1)

= (c+ 1)(ai−1 − 1),

which gives ai = (c + 1)ai−1 − Si−1 = cai−1 − Si−2. When S0 = 0, the alternative
definition holds for i = 2 as well.

Note that by letting c′ = c+1, we get exactly the well-known sequence defined by
the recurrence bi = c′(bi−1 − bi−2); see, e.g., [7]. For this sequence, it is known that
since c′ < 4, no matter what the initial conditions are exactly (but 0 < b1 < b2), there
exists an integer n such that b1 < b2 < · · · < bn, while 0 < bn+1 ≤ bn. Therefore, this
property holds for the sequence ai, and we use this value of n in our proof.

We consider a set of n jobs as follows. For job j, pj = wj = aj . The release time
of job j is rj = Sj−1 − (j − 1)ε, where ε < 1

n . Let T = Sn, which is the total size of
all jobs.

By our assumption, the performance guarantee of the algorithm is smaller than c,
and we next characterize the permutation which the algorithm must use.

Consider the time T − ε. If the machine works continuously until this time, and
since an optimal solution can run the jobs as follows—job 1 during the time [0, S1− ε]
and [T−ε, T ], and job k > 1 during the time [Sk−1−ε, Sk−ε]—then it must be the case
that the total size of the jobs which the algorithm did not complete until time T − ε is
less than ca1. Since c = a2 < a3 < · · · < an, the only such job can be job 1. We next
prove by induction that if the last jobs in the permutation are jobs k− 1, k− 2, . . . , 1,
then the job before k − 1 must be job k (for any 2 ≤ k ≤ n − 1). Consider the
time T − kε and an optimal schedule which runs job j, where j < k, during the time
slot [Sj−1, Sj ], the job k during the time slots [Sk−1, Sk − kε] and [T − kε, T ], and
any job j > k during the time slot [Sj−1 − kε, Sj − kε]. Since the jobs 1, 2, . . . , k − 1
have a lower priority than jobs k, k + 1, . . . , n, and among the set {1, 2, . . . , k − 1}
jobs of lower indices have a lower priority, job j − 1 is preempted upon the release of
job j, for j = 2, 3, . . . , k − 1, leaving a part of length ε of each such job incomplete.
This gives a total of (k − 1)ε, which means that there is an additional incomplete
job. However, the total size of the incomplete jobs at time T − kε must be smaller
than c ·ak. Therefore, since ak+1+Sk−1 = c ·ak and ak+1 = min{ak+1, ak+2, . . . , an},
the only additional incomplete job must be job k.

Since the n− 1 last jobs in the permutation must be n− 1, n− 2, . . . , 1, the first
job in the permutation is job n.

Consider now the time T − nε. An optimal solution can run each job j during
the time slot [Sj−1, Sj ], and thus at time Sn − nε > Sn−1 it runs job n. However,
the algorithm preempts each job in favor of the newly released job, and hence none
of the jobs is completed by this time. This gives a ratio of Sn

an
. Since an+1 < an,

we have an+1 = (c + 1)(an − an−1) ≤ an or c · an ≤ (c + 1)an−1. Moreover, an =

can−1−Sn−2, so
Sn

an
= an+an−1+Sn−2

an
= (c+1)an−1

an
≥ c, which is a contradiction.

5. Concluding remarks. In section 4 we have shown that the performance of
universal scheduling algorithms may deteriorate drastically when release dates are
added to the universal scheduling problem with a min-sum objective function. Other
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generalizations do not admit any (even exponential-time) algorithm with bounded
performance guarantee: If a nonadaptive algorithm cannot guarantee to finish within
the minimum makespan, then an adversary creates an arbitrarily long breakdown
at the moment that an optimal schedule has completed all jobs. Examples of such
variations are the problem with two or more machines instead of a single machine,
or the problem in which preempting or resuming a job requires (even the slightest
amount of) extra work. In these problem variants, the worst case examples require
rather artificial machine behaviors in which all machines break down simultaneously.
Reasonably restricted settings might still allow for a universal sequence with constant
performance guarantee.

We hope to initiate the study of universal sequencing also for other scheduling
problems. As above, problem variants with different objective functions, e.g., mini-
mizing the makespan on multiple machines, must avoid the extreme machine behavior
of simultaneous unavailability. The more complex machine environment of a flowshop
seems particularly interesting. A significant amount of research addresses flowshop
scheduling on two machine stages with limited machine availability; see, e.g., the re-
cent survey [32]. While several algorithms have been shown to perform very well (even
arbitrarily well, depending on the specific setting) when the machine availability is
known in advance, we are not aware of investigations on universal solutions. Finally,
notice that we focused in our present work more on universal solutions for unreliable
machines and less on universal solutions for different cost functions. Even on an ideal
machine, it would be interesting to explore which properties of cost functions and
scheduling constraints are sufficient to admit good universal solutions.

Acknowledgments. We thank two anonymous referees whose comments helped
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