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Abstract
In online minimum cost matching on the line, n requests appear one by one and have to be matched
immediately and irrevocably to a given set of servers, all on the real line. The goal is to minimize the
sum of distances from the requests to their respective servers. Despite all research efforts, it remains
an intriguing open question whether there exists an O(1)-competitive algorithm. The best known
online algorithm by Raghvendra [29] achieves a competitive factor of Θ(log n). This result matches
a lower bound of Ω(log n) [3] that holds for a quite large class of online algorithms, including all
deterministic algorithms in the literature.

In this work, we approach the problem in a recourse model where we allow to revoke online
decisions to some extent, i.e., we allow to reassign previously matched edges. We show an O(1)-
competitive algorithm for online matching on the line with amortized recourse of O(log n). This is
the first non-trivial result for min-cost bipartite matching with recourse. For so-called alternating
instances, with no more than one request between two servers, we obtain a near-optimal result. We
give a (1+ε)-competitive algorithm that reassigns any request at most O(ε−1.001) times. This special
case is interesting as the aforementioned quite general lower bound Ω(log n) holds for such instances.
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1 Introduction

Matching problems are among the most fundamental problems in combinatorial optimization
with great importance in theory and applications. In the bipartite matching problem, we
are given a complete bipartite graph G = (R ∪ S,E) with positive edge cost ce for e ∈ E.
Elements of R and S are called requests and servers, respectively, with n := |R| ≤ |S|.
A matching M ⊆ E is a set of pairwise non-incident edges. A matching is called complete
if every request in R is matched to a server in S, i.e. if it is incident to exactly one edge
of M . The task is to compute a complete matching of minimum cost, where the cost of a
matching M is c(M) :=

∑
e∈M ce. When all information is given in advance, the optimum

can be computed efficiently, e.g., by using the Hungarian Method [22].
In the online setting, however, the set of requests is not known a priori. Requests arrive

online, one by one, and have to be matched immediately and irrevocably to a unmatched server.
As we cannot hope to find an optimal matching under these restrictions, we use standard
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competitive analysis to evaluate the performance of algorithms. An online algorithm is α-
competitive if it computes for any instance a matchingM with c(M) ≤ α ·OPT, where OPT is
the cost of an optimal matching. For arbitrary edge costs, the competitive ratio of any online
algorithm is unbounded [19,21]. For metric costs, there is a deterministic (2n−1)-competitive
algorithm and this is optimal for deterministic online algorithms [19, 21]. A remarkable
recent result by Nayyar and Raghvendra [27] is a fine-grained analysis of an online algorithm
based on t-net cost [28] showing a competitive ratio of O(µ(G) log2 n), where µ(G) is the
maximum ratio of minimum TSP tour and weighted diameter of a subset of G.

So far, the online matching problem has resisted all attempts for achieving an O(1)-
competitive algorithm even for special metric spaces such as the line. In online matching on
the line the edge costs are induced by a line metric; that is, we identify each vertex of G with
a point on the real line and the cost of an edge between a request and a server equals their
distance on the line. The competitive ratio of the aforementioned algorithm is then O(log2 n),
as µ(G) = 2. This has been improved to Θ(logn) [29], which is best possible for a large class
of algorithms [2]. It remains a major open question whether there exists an O(1)-competitive
online algorithm (deterministic or randomized) on the line.

In this paper, we consider online matching on the line with recourse. In the recourse
model, we allow to change a small number of past decisions. Specifically, at any point, we may
delete a set of edges {(ri, si)}i of the current matching and rematch the requests ri to different
(free) servers. Online optimization with recourse is an alternative model to standard online
optimization which has received increasing popularity recently; see, e.g., [1, 4, 6, 13,18,25].
Obviously, if the recourse is not limited then one can just simulate an optimal offline algorithm,
and the online nature of the problem disappears. We say an algorithm requires amortized
recourse budget β if it rematches requests at most βn times in total. The challenging question
for online matching on the line is whether it is possible to maintain an O(1)-competitive
solution with bounded recourse, i.e., with sublinear recourse budget.

Our results. We answer this question to the affirmative and give non-trivial results for the
min-cost online matching problem with recourse. We show that with limited recourse, one
can indeed maintain a constant competitive solution on the line.

I Theorem 1. The online bipartite matching problem on the line admits an O(1)-competitive
algorithm with amortized recourse budget O(logn).

Our algorithm builds on the t-net-cost algorithm by Raghvendra [28,29]; details follow
later. It has the nice property that it interpolates between an O(logn)-competitive online
solution (without recourse) and an O(1)-approximate offline solution (with large recourse).

Furthermore, we investigate a special class of instances, called alternating instances, where
between any two requests on the line there is at least one server. This class is interesting
as the quite strong lower bound of Ω(logn) for a large class of algorithms given in [3], that
includes all deterministic online algorithms without recourse in literature, holds even on such
instances. For alternating instances, we present a more direct and near-optimal algorithm
with a scalable performance-recourse trade-off.

I Theorem 2. For alternating instances of online matching on the line, there exists a (1+ε)-
competitive algorithm that reassigns each request O(ε−1.001) times.

While the algorithm is quite simple, the proof requires a clever charging scheme that exploits
the special structure of optimal solutions on alternating instances. We observe that a large
number of recourse actions for a specific request involves large edges in the optimal solution
elsewhere on the line.
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As a byproduct we give a simple analysis of (a variant of) the algorithm in the traditional
online setting without recourse. We show that it is O(log ∆)-competitive for alternating
requests on the line, where ∆ is the ratio between the largest and shortest request-server
distance. This result compares to Θ(logn) for the currently best known online algorithm [29].

I Remark. Simultaneously and independently of our work, Gupta, Krishnaswamy and
Sandeep [17] obtained a similar result for online min-cost matching with recourse on the line.
Their algorithm builds on the O(n)-competitive Permutation algorithm [19,21] and adapts
it for the recourse setting. On the line this is done by first matching edges according to
Permutation and then asymmetrically applying recourse to arcs (r, s) of the current matching
that overlap in a certain way. Both, their algorithm and analysis are completely different from
ours. They further obtain a more general O(logn)-competitive algorithm with amortized
recourse O(logn) for arbitrary metrics.

Further related work. Extensive literature is devoted to online bipartite matching problems.
The maximum matching variant is quite well understood. For the unweighted setting optimal
deterministic and randomized algorithms with competitive ratio 2 and e/(e−1) are known [20].
The weighted maximization setting does not admit bounded guarantees in general, but
intensive research investigates models with additional assumptions; see, e.g., the survey [26].
The online min-cost matching problem is much less understood. It remains a wide open
question whether a constant-competitive algorithm, deterministic or randomized, is possible
for online min-cost matching on the line. In fact, the strongest known lower bound is 9+ε [10].
For a quite large class of algorithms, including all deterministic ones in the literature, there
is lower bound of Ω(logn) [3].

Randomization allows an improvement upon the best possible deterministic competitive
ratio of (2n−1) for metric online bipartite matching [19,21]; there is an O(log2 n)-competitive
randomized algorithm [5]. On the line, no such improvement on the deterministic result by
randomization is known; the competitive factor of O(logn) is the best known result for both,
deterministic and randomized, algorithms [16,29].

Interestingly, when assuming randomization in the order of request arrivals (instead
of an adversarial arrival order), the natural Greedy algorithm is n-competitive [11] for
general metric spaces. Furthermore, the online t-net cost algorithm is in this case O(logn)-
competitive [28] here. Very recently, Gupta et al. [14] gave an O((log log logn)2)-competitive
algorithm in the model with online known i.i.d. arrivals.

Maintaining an online cardinality-maximal bipartite matching with recourse was studied
extensively; see, e.g., [1,6–8,12,30] and references therein. Bernstein et al. [6] showed recently
that the 2-competitive greedy algorithm uses amortized O(n log2 n) reassignments, leaving a
small gap to the lower bound of Ω(n logn). In contrast, for the min-cost variant, it remained
a challenging question whether recourse can improve upon the competitive ratio. Even on
the line, it remained open whether and how recourse can improve the bound of O(logn) [29].

The following two models address other types of matching with recourse. In a setting
motivated by scheduling, several requests can be matched to the same server and the goal
is to minimize the maximum number of requests assigned to a server. Gupta et al. [15]
achieve an O(1)-competitive ratio with amortized O(n) edge reassignments. A quite different
two-stage robust model has been proposed recently by Matuschke et al. [24]. In a first stage
one must compute a perfect matching on a given graph and in a second stage a batch of 2k
new nodes appears which must be incorporated into the first-stage solution to maintain a
low-cost matching by reassigning only few edges. For matching on the line, they give an
algorithm that maintains a 10-approximate matching reassigning 2k edges.

APPROX/RANDOM 2020
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Recourse in online optimization has been investigated also for other min-cost problems
even though less than for maximization problems. Most notably seems the online minimum
Steiner tree problem [13, 18, 23, 25]. Here, one edge reassignment per iteration suffices to
maintain an O(1)-competitive algorithm [13], whereas the online setting without recourse
admits a competitive ratio of Ω(logn).

The recourse model has some relation to dynamic algorithms. Instead of minimizing the
number of past decisions that are changed (recourse), the dynamic model focuses on the
running time to implement this change (update time). A full body of research exists on
maximum (weighted) bipartite matching; we refer to the nice survey in [9]. We are not aware
of any results for min-cost matching.

2 Preliminaries

A path P is called alternating with respect to a matching M , if every other edge in P is
contained in M . An alternating path is called augmenting with respect to M if it starts and
ends at vertices are not covered by M . A common method for increasing the cardinality of
an existing matching M is to augment along an augmenting path P . After augmentation,
the resulting matching M̃ is given by the symmetric difference1M ⊕ P . There may be a
choice between different augmenting paths; typically, a path of minimum cost (w.r.t. some
metric) is selected. Recently, Raghvendra [28] introduced the following metric. For t > 1,
the t-net-cost of a path P w.r.t. a matching M is

φMt (P ) := t · c(P \M)− c(P ∩M) = t · c(P ∩ M̃)− c(P ∩M). (1)

Our algorithm maintains three matchings: the recourse matching M , the actual output
of the algorithm, and two auxiliary matchings based on (online and offline versions of)
the t-net-cost algorithm [28], namely, the offline matching M∗ and the online matching M ′.
While M∗ is a near-optimal offline matching that possibly requires a large amount of
recourse, M ′ is an online matching that is O(logn)-competitive [29] but uses no recourse.
We describe how M∗ and M ′ are obtained based on the above cost function; see also [27–29].
By speaking of the matching Mi, M∗i or M ′i , we refer to the state of the respective matching
after serving the i-th request including possible reassignments.

On arrival of the i-th request ri, the offline t-net-cost algorithm constructs the offline
matching M∗i by augmenting M∗i−1 along an alternating path Pi of minimum t-net-cost
w.r.t. M∗i−1. That is, M∗i := M∗i−1 ⊕ Pi. By definition, this path starts at ri and ends at
a free server, which we denote by si. While this procedure may require a large amount of
recourse, the resulting matching has been shown to have bounded cost.

I Lemma 3 (Raghvendra [28]). For any i and t > 1, it holds that c(M∗i ) ≤ t · OPTi,
where OPTi := c(MOPT

i ) is denotes the cost of an optimal offline matching MOPT
i of the

first i requests.

For constructing the online matching M ′i , augmentation along a path is impossible since
using recourse is not permitted. Instead, the online t-net-cost algorithm maintains M∗ as
an auxiliary matching and constructs M ′i by directly connecting the end points ri and si of
the augmenting path Pi. That is, M ′i := M ′i−1 ∪ {(ri, si)}. In particular, M ′i and M∗i utilize
the same sets of servers.

1 For two sets X, Y, their symmetric difference is given by X⊕Y := (X∪Y )\(X∩Y ). For matchings M1, M2,
their symmetric difference M1 ⊕M2 consists of disjoint alternating paths and cycles.
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Intuitively, in putting a higher weight on edges that would be added to M∗ during
augmentation, the parameter t in the t-net cost function discourages the offline t-net-cost
algorithm from choosing long paths for augmentation (w.r.t. actual length). This allows for a
trade-off between minimizing the cost of the underlying offline matching, and the connection
costs in M ′ (with the latter in a greedy fashion). Looking at the extremal cases, this becomes
even more clear. When t = 1, the offline t-net-cost algorithm is in fact equivalent to the
Hungarian Method [22] which computes an optimal offline solution. The corresponding online
matching, however, has a competitive ratio of Ω(n). In contrast, as t tends to infinity, the
algorithm’s behavior resembles that of the greedy online algorithm matching a request to
the nearest free server. Its competitive ratio can be exponential [19]. Interestingly though,
when t = 3, the t-net-cost algorithm has a competitive ratio of O(logn) [29].

3 A Constant-Competitive Algorithm

We start by giving an overview of our algorithm for the recourse model. It exploits the
properties of the t-net-cost algorithm by carefully balancing between the offline matchingM∗
and the online matching M ′, simultaneously bounding competitive ratio and recourse budget.
On a high level, this is done as follows. When a request arrives, we match it as in M ′ and
locally group it with other recent requests into blocks that partition the line. Matching
requests as in the online matching within a block somewhat increases total cost but requires
zero recourse. A structural result, Lemma 8, allows us to bound this increase in cost up
to a certain point at which the requests in the block are matched according to M∗ causing
a local update. During such an update, which we call a recourse step, the changes in M∗
caused by the arrivals of the requests in the respective block are applied simultaneously,
eliminating any redundant recourse actions. Intuitively, blocks can therefore be seen as input
buffers for M∗ that temporarily use edges from M ′. The underlying structure of the blocks
guarantees that recourse steps affect only the corresponding portion of the line. To prevent
the recourse steps from causing too many reassignments, we additionally incorporate an edge
freezing scheme that targets low-cost edges and at the same time keeps the overall cost low.

Given the precise value of OPT and n a priori, one could employ a very simple freezing
scheme, which freezes all edges of M ′ with cost OPT

n or less. However, in the online model,
we do not know OPT or n and, thus, need a dynamic freezing scheme. A typical guess-and-
double approach may work concerning the costs. Yet, care has to be taken as OPTi

i is not
monotone. A major obstacle appears to be the bounding of the recourse budget. Details on
our algorithm and dynamic freezing scheme are given in Section 3.

In Section 4, we consider alternating instances. Again, we simulate the offline match-
ing M∗ and employ a simple freezing scheme. After a request reaches a certain threshold of
reassignments, we freeze this request and the currently associated matching edge. We charge
detours that are taken due to frozen edges to large non-frozen edges of MOPT.

3.1 Further Definitions and Notation
Our algorithm classifies requests according to the structure of intervals that describe where
on the line the t-net-cost algorithm searches for a free server. Define the search interval
of a request ri as the open interval Īi = (sL

i , s
R
i ), where sL

i and sR
i are points on the line

farthest to the left and right of ri, respectively, reachable from ri with t-net-cost φ
M∗i−1
t (Pi).

One of sL
i , s

R
i is the server si (which ri is matched to in M ′), see Lemma 6, while the other

may not necessarily be a point of R ∪ S. For the purposes of this definition, we think of
it as a (virtual) server. That is, we ask the question “If point p was a server in S, would

APPROX/RANDOM 2020
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sR
j

sL
j+1

sR
j+1

sL
j

rj+1

Īj+1

Ij+1

rj

Īj = Ij

Figure 1 Construction of search intervals and aggregate search intervals of requests rj and rj+1.
The points sL

j and sR
j+1 (hatched) are points on the line that do not lie in S. We think of them as

virtual servers for the purpose of defining Īj and Īj+1 respectively.

we be able to reach it with t-net-cost φM
∗
i−1

t (Pi)?”. In other words, Īi is the convex hull of
all points on the line, reachable from ri via an augmenting path of t-net-cost (strictly) less
than φM

∗
i−1

t (Pi).
Define the aggregate search interval of ri to be the maximal (open) interval Ii which

contains ri and is a subset of
⋃
j≤i Īj . Intuitively,

⋃
j≤i Īj consists of the (disjoint) portions

of the line, which the t-net-cost algorithm has considered, up to time i, in its search for free
servers; the interval Ii is simply the portion containing ri. See Figure 1 for an illustration.
By definition, the portions of the line constituting

⋃
j≤i Īj grow monotonously (and possibly

merge). Thus, the aggregate search intervals inhibit a laminar structure as detailed in the
following observation.

B Observation 4. Whenever i < j, then either Ii ∩ Ij = ∅ or Ii ⊆ Ij .

Another important observation is the fact, that the arrival of a request ri only affects requests
and servers in its search interval Īi. This is due to the fact that the augmenting path used
by the t-net-cost algorithm is entirely contained in the search interval. Outside of Īi, the
matchings M∗ and M ′ remain unchanged motivating the following observation.

B Observation 5. Altering the arrival order of requests via a permutation π for which Ii ⊆ Ij
and i < j imply π(i) < π(j) does not alter the final matching.

We say an aggregate search interval Ii has level k, if (1 + ε)k−1 ≤ |Ii| < (1 + ε)k and
write `(Ii) = k. Throughout, we set t = 3 and ε = 1

32t . Further, two aggregate search
intervals are said to belong to the same block, if they intersect with each other and are of
same level. If the aggregate search intervals of a block do not intersect those of higher level,
then this block is said to be a top block. With Observation 5 in mind, we note that the
top blocks partition the line into portions that are compatible with the structure of M∗.
A typical block-structure is depicted in Figure 2.

Our definition of search intervals was motivated by intuition and practicality (specifically
for the proof of Lemma 12 later on). However, it describes intervals different from the search
intervals defined in [29]. The following lemma shows that our definition of aggregate search
intervals coincides with Raghvendra’s definition of intervals of a cumulative search region.
We may therefore use the corresponding results from [29].

I Lemma 6. For a request ri, the corresponding aggregate search interval Ii and interval of
a cumulative search region Ci are equal. Further, for the search interval Īi = (sL

i , s
R
i ), we

have si ∈ {sL
i , s

R
i }.
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Ii

Ij

Ik

r`

Figure 2 Illustration of a typical block structure. On arrival of ri, its aggregate search interval Ii

creates a top block (active) initiating a recourse step. Requests in the hatched area (now inactive)
are reassigned w.r.t. M∗

i−1 ⊕MF
i . On Ii, locally, M∗

i−1 = M∗
h for j, k ≤ h < i.

Proof. To see that the first claim holds, note that the intervals Ci and Ii are constructed
the same way. They are built by by taking the union of all known search intervals (for the
respective definition) and choosing of the resulting new intervals that which contains the
considered request. The definition of search intervals in [29], which, to avoid confusion, we call
dual intervals, is as follows. The t-net-cost algorithm maintains dual values y : S ∪R→ R+

satisfying ys + yr = c(s,r) if (s, r) ∈ M∗ and ys + yr ≤ t · c(s,r) otherwise. Additionally,
duals of free requests or servers are zero. When a request ri arrives, a shortest t-net-
cost path Pi is found and the duals of all vertices in the search tree (denoted by Ai ⊆ S

and Bi ⊆ R) are updated before augmentation so that the dual constraints on Pi are
tight. This is true for both augmenting paths PL

i and PR
i that are used to reach sL

i

and sR
i respectively. A dual interval of a request ri is defined as interior(

⋃
r∈Bi cspan(r, i)),

where cspan(r, i) = [r − yimax(r)
t , r + yimax(r)

t ] and yimax(r) is the highest dual weight assigned
to r until time i.

Raghvendra [28] shows, that the dual constraints on PL
i and PR

i are tight before augmen-
tation. Therefore, we obtain our search intervals Ii by replacing yimax(r) with the dual weight
of r before augmentation along Pi. Hence, a search interval is contained in the dual interval
and therefore Ii ⊆ Ci. At the same time, dual weights of requests are increased when the
request is contained in some Bi as detailed above or reduced right after an augmentation.
Thus, the maximal value yimax(r) is attained right before an augmentation, in which case
the request is part of some PL

h or PR
h , implying Ci ⊆ Ii. Therefore, the intervals Ii and Ci

coincide and we may use the respective results from [29].
The second claim follows directly from Lemma 6 in [29], which states that there are no free

servers in the dual interval. As seen above, search intervals are contained in dual intervals,
so this statement is true for our definition as well. And lastly, since clearly si ∈ [sL

i , s
R
i ], it

follows that si ∈ {sL
i , s

R
i }. J

3.2 The Algorithm

Our algorithm uses the above structures to partition the requests (dynamically) into three
groups. For each group, we follow a different assignment procedure to construct our recourse
matching M . We first give some intuition and then, further below, the precise description.

Group 1: The first group consists of all requests whose aggregate search intervals belong
to a top block. We label requests in this group active and all other requests inactive. In M ,
we match an active request ri exactly as in the online matching M ′. That is, we have ei

APPROX/RANDOM 2020
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in M , where ei = (ri, si) ∈M ′ connects the endpoints of the minimum t-net-cost augmenting
path Pi with respect to M∗i−1 (Algorithm 1, Step 1). In particular, any arriving request
belongs immediately to a top block and is labeled active, by definition of aggregate search
intervals. In the course of the algorithm’s execution new blocks may appear (on top) rendering
previously active requests inactive. We call this a recourse step.

Group 2: This group consists of inactive requests ri, whose corresponding edge ei ∈ M ′

is of negligible size. The precise freezing scheme (Algorithm 1, Steps 2-4) is detailed below.
Intuitively, it is not worth to spend recourse on them; it would ruin our recourse budget, see
Figure 4. We call such a request or edge frozen and denote by Fj ⊆M ′j the set of frozen edges
at time j. These requests, too, are to be matched in M according to the online matching M ′.
However, for technical reasons, the update on M for a newly frozen request is implemented
with a subsequent recourse step. Denote by MF

j ⊆ Fj the subset of frozen edges that is in
Mj ∩M ′. Their low costs ensures that frozen edges contribute in total at most OPT to the
cost of M .

Group 3: The remaining requests (inactive and unfrozen) are in this group. Ideally, we
would like to match these as in the offline matching M∗. This may not be possible, as M∗
could assign a request r to a server s that is already covered by MF. In such a case, we
match r via a detour of low additional cost as follows; we call this detour matching.

Detour Matching. Consider an unfrozen request r and the symmetric difference M∗ ⊕MF

consisting of alternating paths and cycles. There exists a (unique) alternating path P from r

to some server s′ not yet matched via MF. To see this, note that the path starts with
the edge (r, s) ∈ M∗ which cannot be contained in an alternating cycle as r is not frozen.
Additionally, it cannot end at a request, since every request on P is reached via an edge
of MF. But since a request on P matched in MF is certainly also matched (via a different
edge) in M∗, it can be used to extend P . Thus, P ends at a server s′ not matched in MF.
In M , we match r directly to this server s′ (Alg. 1, Step 7). While the online matching M ′
does not change but only gets revealed over time, the offline matching M∗ can change
its structure drastically at any point. As this causes a lot of recourse, the first group is
used as an input buffer and the detour matching is updated only periodically and locally,
whenever a new top block appears. Specifically, at time i, an inactive request rj is matched
with respect to the detour matching M∗h(i,j) ⊕M

F
i , where h(i, j) = max{k ≤ i | rj ∈ Ik

and Ik is not in a top block}. That is, h(i, j) is the last time before i when rj participated
in a recourse step. For an example, see Figure 2, where h(i, `) = j.
When considering active, inactive or frozen objects, or membership in a block, we identify
a request ri, the edge ei ∈M ′ and the interval Ii. For instance, we say ri is of level k and
belongs to a certain block, when this holds for Ii, or, ei is active when this is the case for ri.

We describe Algorithm 1 in a step-by-step manner and detail the precise freezing scheme.
On arrival of a request ri, label it active and match it according to the online matching M ′.

Freezing/unfreezing inactive requests. We update the set of frozen edges as follows. If
the cost of an inactive edge ej ∈M ′ falls below OPTi

i2 , then freeze it and add it to Fi. Note
that while we use ej to determine whether rj is frozen, rj may use another edge in Mi.

If for a previously frozen ej , we have cej > OPTi
i , unfreeze and delete it from Fi and MF

i .
Matching it according to M ′ is now too costly. Reassign it w.r.t. M∗h(i,j) ⊕M

F
i as follows.

Consider an edge e = (s, r) right before it is unfrozen. If e is already matched according to
the offline matching, then there is nothing to do. Otherwise, it must be part of an alternating
path or cycle in M∗ ⊕MF. In the latter case, again, no recourse action needs to be taken as
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Algorithm 1 for computing an online bipartite matching with recourse on the line.

On arrival of the i-th request ri: . ri matched in M ′ via ei = (ri, si)
1: match ri to si as in M ′ . active

Freezing/Unfreezing
2: determine the set Fi of frozen edges
3: for inactive requests rj that become unfrozen do
4: remove ej from MF

i and repair assignments on corresponding path of M∗h(i,j)⊕M
F
i

Recourse step (new top block)
5: if there is no j < i such that Ij ⊆ Ii and `(Ij) = `(Ii) then
6: for rj ∈ Ii recently frozen do add ej = (rj , sj) to MF

i and reassign rj to sj
7: for unfrozen rj ∈ Ii \ {ri} do reassign rj according to M∗i−1 ⊕MF

i . now inactive

s s′

P

r′ r s s′

P1 P2

r′ r

Figure 3 Illustration of Step 4 in Algorithm 1. Edges of M∗ are snaked, edges of MF solid and
edges of M \MF dashed. After unfreezing r, the removal of (r, s) splits the path in M∗ ⊕MF in
two parts.

the removal of e results in a path from r to s. In the detour matching, we want to connect
the ends of this path, which is already accomplished by the edge e = (s, r). Consider the
case that e ∈ P for some alternating path P in M∗ ⊕MF that starts in a request r′ and
ends in a server s′. Unfreezing e and matching according to M∗ ⊕MF decomposes P into
the r′-s-path P1 and the r-s′-path P2. In Algorithm 1, we implement these changes via two
recourse actions: we reassign r to s′ and r′ to s; see Figure 3.

Recourse step. If there is no j < i such that Ij ⊆ Ii and `(Ij) = `(Ii), then the arrival
of ri produces a new top block and may render a number of previously active requests
inactive. This triggers, what we call a recourse step involving a number of recourse actions
to accommodate the newly inactive requests as follows.

First, assign requests in Ii that were recently frozen according to M ′ and add the
corresponding edge to MF

i . Next, reassign all other requests (non-frozen, inactive) that lie
in Ii according to M∗i−1 ⊕MF

i . We described this as detour matching above; see Figure 2.
Delaying the reassignment of frozen requests according to the frozen edge until their next

recourse step, prevents reassignments when a request repeatedly alternates between frozen
and unfrozen. This “delayed reassignment” accounts for the difference between MF

i and Fi.
To see that the freezing scheme is indeed necessary, consider the example in Figure 4

showing an alternating instance with exponentially increasing edge costs. Without freezing
low-cost edges, at the arrival of any request ri with i > 2, all requests rj with j < i are
reassigned. Thus, the recourse budget is linear.

Bounding the competitive ratio. The work already put into structuring M enables us to
bound its cost rather easily. Recall that c(M∗) ≤ t ·OPT due to Lemma 3. Frozen edges
satisfy c(MF) ≤ OPT as, after arrival of the last request, there are at most n frozen edges
of cost at most OPT

n each. By triangle inequality, the contribution of inactive non-frozen
requests to the cost of M is at most c(M∗ ⊕MF) ≤ (t+ 1) ·OPT.

B Observation 7. The cost of inactive edges is at most (t+ 2) ·OPT.
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r3 r1 r2 r4

12 4 81632 64 128

M1 I1

M2 I2

M3 I3

M4 I4

Figure 4 An alternating instance with exponentially increasing connection costs. Edge costs
are indicated above the corresponding portion of the line (drawing not to scale). Note that the
aggregate search intervals grow exponentially in size. Therefore, a (top) block consists of a single
aggregate search interval only and every arrival of a request triggers a recourse step. Active edges
are drawn solid, inactive edges dashed.

To bound the cost of active edges, we build on the analysis of Raghvendra [29]. We
refine his technical propositions and perform a slightly more fine-grained analysis. Instead of
simultaneously bounding the cost of all blocks of the same level, we argue more generally on
the cost of any set of disjoint blocks at different levels. In particular, we are interested in
bounding the cost contribution of the top blocks.

I Lemma 8. For t = 3, the cost of all active edges of M is bounded by O(OPT).

To prove this lemma, we may closely follow the argumentation given in [29] for the online
problem without recourse. In fact, there is given essentially the same statement for all edges
of blocks of a particular level. We can adapt the approach, crucially using Observation 5, to
make the arguments work for (disjoint) blocks of different levels. We leave the detailed proof
for the full version.

I Corollary 9. Algorithm 1 has a constant competitive ratio.

Bounding the recourse. Due to delayed reassignments, freezing a request r does not cause
any immediate recourse actions. Unfreezing r, on the other hand, may cause reassignments
(Step 4), namely to r and possibly one additional request, see Figure 3. We charge these
two recourse actions to r, in particular to the last recourse step it participated in. However,
recourse due to unfreezing r happens at most once between two consecutive recourse steps of r.
This implies, that a request is charged at most three times per recourse step it participates
in, once for the recourse step itself and possible two times more for a subsequent unfreezing.

B Observation 10. A request is charged at most three times per recourse step it is involved
in.

For a request getting frozen at time i and unfrozen at time j > i, we have ce ≤ OPTi
i2

and ce > OPTj
j for the corresponding e ∈M ′. As OPTi ≤ OPTj , this implies the following.

B Observation 11. A request frozen at time i stays frozen until time at least i2.

On the other hand, the number of recourse steps in which a continuously non-frozen
request takes part in can be bounded from above.
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I Lemma 12. If a request r ∈ Ii ⊆ Ij is not frozen from time i to time j, then it holds
that `(Ij)− `(Ii) = O(log j). In particular, between time i and j, there are O(log j) recourse
steps in which r can participate.

Proof. Consider the search interval Īj = (sL
j , s

R
j ). By definition of search intervals, there

exist augmenting paths PL
j , P

R
j connecting rj to sL

j and sR
j with the same t-net-cost as Pj ,

the path used by the t-net-cost algorithm. We bound the length of Pj ∈ {PL
j , P

R
j } by

c(Pj) = c(Pj ∩M∗j−1) + c(Pj ∩M∗j ) ≤ 2t ·OPTj . (2)

Without loss of generality, assume Pj = PL
j . Interpreting the point sR

j as a virtual server
and assuming that it is a contained in S, we could augment M∗j−1 also along PR

j yielding a
different matching M̃∗j . By definition of PR

j and Equation (1), we have

t · c(Pj ∩M∗j )− c(Pj ∩M∗j−1) = φ
M∗j−1
t (Pj) = φ

M∗j−1
t (PR

j ) = t · c(PR
j ∩M̃∗j )− c(PR

j ∩M∗j−1).

Thus,

c(PR
j ) = c(PR

j ∩M∗j−1) + c(PR
j ∩ M̃∗j )

≤ c(PR
j ∩M∗j−1) + c(Pj ∩M∗j ) + 1

t c(P
R
j ∩M∗j−1) ≤ 3t ·OPTj .

From Equation (2), we get |̄Ij | ≤ c(PL
j )+c(PR

j ) ≤ 5t ·OPTj , which implies |Ij | ≤
∑
k≤j |̄Ik| ≤

5t · j ·OPTj . On the other hand, the cost of |Ii| can be bounded from below by ce, where e is
the edge in M ′ incident to r, as both ends of e are contained in the interval. We then obtain
|Ij |
|Ii|
≤ 5t · j ·OPTj

ce
< 5t · j3.

The last inequality follows from the assumption that r is not frozen at time j, implying
that ce > OPTj

j2 . Recall that |Ii| < (1 + ε)`(Ii) and (1 + ε)`(Ij)−1 ≤ |Ij |. We conclude

`(Ij)− `(Ii) ≤ 1 + log(1+ε)(5t · j3) = 1 + log(1+ε)(5t) + log j
log(1 + ε) ≤ c · log j , (3)

for some constant c. Regarding the second claim, recall that r participates in a recourse step
when an interval containing r opens a new top block (i.e. a new level) while r is not (freshly)
frozen. Between time i and time j, this can only happen for intervals Ih of distinct levels for
which Ii ⊆ Ih ⊆ Ij . The claim follows. J

Lemma 12 and Observation 11 bound the total number of recourse actions taken by
Algorithm 1.

I Lemma 13. Algorithm 1 uses a recourse budget of at most O(logn).

Proof. Consider a request r. By Observation 10, it suffices to bound the number of recourse
steps that r is involved in. Let [iUh , iFh ], for h = 0, 1, . . . , k, be maximal intervals of consecutive
time points during which r is not frozen, i.e., r is not frozen at any time i ∈ [iUh , iFh ]. We
use induction on k to show that r participates in at most 2c · log(iFk ) recourse steps, where c
is the constant from Equation (3). The base case, k = 0, follows directly from Lemma 12.
For k ≥ 1, we have (iFk−1)2 ≤ iUk ≤ iFk due to Observation 11. By induction hypothesis, the
number of reassignments that involve r in the first k − 1 time intervals is at most

2c · log(iFk−1) ≤ 2c · log
(√

iFk

)
= c · log(iFk ).

For the last time interval, we have at most c · log(iFk ) many such recourse steps by Lemma 12.
Since iFk ≤ n, this concludes the proof. J

Corollary 9 and Lemma 13 together imply Theorem 1.
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4 A Near-Optimal Algorithm on Alternating Instances

For alternating instances, we may assume that requests and servers alternate from −∞ to ∞
on the line, with servers at ±∞. For such instances, an optimum matching matches all
requests either to the server directly to their left or all requests to the server on their right.
Denote these matchings by ML and MR respectively and call their edges minimal.

We describe a (1 + ε)-competitive algorithm for alternating instances that reassigns each
request at most a constant number of times. In addition to its output M , it maintain M∗
and a set of frozen edges MF. A request is frozen when it is reassigned the k-th time, for
some k only depending on ε. The request remains matched to its current server perpetually
and the corresponding edge is added to MF. Non-frozen requests are matched according to
the detour matching M∗ ⊕MF as described in Section 3. By design, the recourse budget
per request is constant, only the competitive analysis remains.

Notation. We use a similar interval structure as before and keep the notation. Consider
intervals Ii = [sL

i , s
R
i ], where sL

i , s
R
i ∈ S are the closest free servers on the line to the left and

right of ri respectively at the time of its arrival. Denote by PL
i , P

R
i the alternating paths

connecting r to sL
i and sR

i respectively that have shortest t-net-cost.
Considered as line segments, the augmenting paths Pi have a laminar structure. We view

them as nodes of a forest, where Pi is a child of the minimal augmenting path that properly
contains it, or a root if no such path exists (see Figure 5). The depth of a path Pi denotes
its distance to the root and determines the number of reassignments of the corresponding
request ri in M∗.

I Lemma 14.
(i) The paths PL

i , P
R
i and the matching M∗i only use minimal edges.

(ii) If Pi = PXi , for X ∈ {L,R}, then in the area of Ii, locally, we have that M∗i = MX.
Specifically, this implies φM∗i−1

t (Pi) = φM
Y

t (Pi) for X 6= Y ∈ {L,R}.
(iii) If Pj is a child of Pi, then Pi = PL

i if and only if Pj = PR
j .

In particular, we have Ij ⊆ Pi and Ij ∩M∗j ∩M∗i = ∅.

Proof. (i): We use induction on i. The base case, i = 1, is easy. Let i ≥ 2. Without loss of
generality Pi = PR

i . Assume Pi contains a non-minimal edge e. Let the notation (s, r) for
an edge reflect that s is to the left of r on the line. Edges (s, r) ∈ Pi are contained in M∗i−1
and by induction hypothesis minimal, so e = (r, s) ∈M∗i . Consider the server s′ right of r.
Since e is not minimal, r < s′ < r′ < s, with r′ being the server right of s′. If s′ was free,
altering Pi to go from r directly to s′ would yield a lower cost. This follows from the fact
that the t-net-cost of a path from a request to a free server is always non-negative, see [28].
If s′ is matched, it must be matched to r′. Therefore, replacing e by (r, s′), (s′, r′), (r′, s)
reduces the cost as well, contradicting the minimality of Pi.

rh rj1 rj2 ri1 rj3 ri2

PL
j1

PR
j1

PL
j2

PR
j2

PL
j3

PR
j3

Pi1=PL
i1

PR
i1

Pi2=PL
i2

PR
i2PL

h

Ph=PR
h

Figure 5 Illustration of a path tree in an alternating instance. Paths not chosen for augmentation
are dashed. Servers are depicted as squares and requests as filled circles.
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(ii): By statement (i), PL
i and PR

i only consist of minimal edges. Then PL
i ∩M∗i−1 = MR

and M∗i−1 ∩ PR
i = ML. After augmenting M∗i−1 along Pi, the matching is flipped (locally).

(iii): By (ii), we know that M∗j ∩ Ij = MX, say X = R, so edges are of the form (r, s).
From part (i), only augmenting paths Ph = PL

h can traverse them. If this happens, all
of Ij is traversed as there is no free server in its interior. As parent of Pj , Pi is the first
path to properly contain Pj and thus Pi = PL

i and in particular Ij ⊆ Pi. Therefore, the
equation Ij ∩M∗j ∩M∗i = ∅ follows directly from (ii). J

The above lemma can be used to show that the sum of lengths of augmenting paths of
some depth grows exponentially towards the root. For a path Ph, denote by |Ph| the length
of the corresponding line segment. Further, let Hk be the set of indices of paths at depth k
in the induced subtree of Ph with the root Ph at depth 0.

I Lemma 15. Consider a path Ph and its grandchildren Pj, for j ∈ H2. Then

|Ph| ≥
(
2− 1

t

)
·
∑
j∈H2

|Pj |.

Proof. Denote by Pi, i ∈ I = H1, children of Ph in the path-forest and by Ji ⊆ J = H2
the sets of indices of their respective children. Without loss of generality, assume Ph = PR

h .
Lemma 14, (iii), implies Pi = PL

i , and Pj = PR
j , for i ∈ I, j ∈ J ; see Figure 5. With again

Lemma 14, (iii), and φM∗i−1
t (PR

i ) ≥ φM∗i−1
t (PL

i ), we get

t · |Ph| ≥ t ·
∑
i∈I
|Ii| = t ·

∑
i∈I

(
|PL
i |+ |PR

i |
)
≥
∑
i∈I

(
t · |PL

i |+ φM
∗
i−1

t (PR
i )
)

≥ t ·
∑
j∈J
|PR
j |+ t ·

∑
i∈I
|Pi \ (∪j∈JiPR

j )|+
∑
i∈I

φM
∗
i−1

t (PL
i ). (4)

Using Lemma 14, we get

φM
∗
i−1

t (PL
i ) = φM

R

t (PL
i ) =

∑
j∈Ji

(
φM

R

t (PL
j ) + φM

R

t (PR
j )
)

+ φM
R

t (Pi \ (∪j∈JiIj))

≥
∑
j∈Ji

(
φM

∗
j−1

t (PL
j ) + φM

R

t (PR
j )
)
− t · |Pi \ (∪j∈JiIj)|.

Since φM∗j−1
t (PL

j ) ≥ φM∗j−1
t (PR

j ) = φM
L

t (PL
j ), the above together with Equation (4) implies

t · |Ph| ≥
∑
j∈J

(
t · |PR

j |+ φM
L

t (PL
j ) + φM

R

t (PR
j )
)
≥ (2t− 1) ·

∑
j∈J
|PR
j |,

where last inequality follows from the observation that φML

t (P ) + φM
R

t (P ) = (t− 1) · |P |. J

Proof of Theorem 2. We in fact prove a stronger result than in the theorem statement and
show that the algorithm described in the beginning of this section is (1 + ε)-competitive
while reassigning each request at most O(ε−(1+λ)) times for fixed λ > 0. Consider a path Ph.
The intervals Ij , j ∈ H2k+2, are contained in paths Pj′ , j′ ∈ H2k+1, by Lemma 14, (iii).
Lemma 15 implies∑

j∈H2k+2
|Ij | ≤

∑
j′∈H2k+1

|Pj′ | ≤
(
2− 1

t

)−k ·∑i∈H1
|Pi|. (5)

Raghvendra [28] shows that the t-net-cost of augmenting paths is always non-negative.
In particular, φM∗h−1

t (Ph) = t · c(Ph ∩M∗h)− c(Ph ∩M∗h−1) ≥ 0, and thus

|Ph| = c(Ph ∩M∗h) + c(Ph ∩M∗h−1) ≤ (t+ 1) · c(Ph ∩M∗h). (6)
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Similarly,
∑
i∈H1

|Pi| ≤ (t+ 1) ·
∑
i∈H1

c(Pi ∩M∗i ) ≤ (t+ 1) · c(Ph ∩M∗i ). In an interval Ii,
locally, M∗h = ML if and only if M∗i = MR by Lemma 14 (ii). With (5) and (6), this implies[

1
t+1

(
2− 1

t

)k − 1
]
·
∑

j∈H2k+2

|Ij | ≤ c
(
Ph \ (∪j∈H2k+2Ij) ∩MX

)
, X ∈ {L,R}. (7)

Denote by α(k, t) the term in square brackets. When a (minimal) edge is frozen, the remaining
instance is again alternating and at most one request will take a detour due to (r, s) being
frozen. The additional cost is bounded by |Ir| and can, via Equation (7), be charged to
non-frozen parts ofMOPT. A part Ph∩MOPT is charged this way at most 2k+2 times before
Ph itself is frozen which leads to a competitive factor of (t+ 2k+2

α(k,t) ). Substituting α(k, t)
from Equation (7) and setting t = 1 + ε

2 and k = 4c(λ)
ε · ε

−λ

λ , for a constant c(λ), we can
show that this term is at most 1 + ε, yielding a recourse of Oλ(ε−(1+λ)). J

As a byproduct, we show, for this special class of instances, a result in the online setting
without recourse. It relates the competitive ratio to the cost metric, i.e., the maximum
difference in edge cost for connecting a request to a server. This result compares to the best
known competitive ratio of O(logn) by Raghvendra [29].

I Theorem 16. The online t-net-cost algorithm is O(log ∆)-competitive for online matching
on an alternating line, where ∆ = maxr,r′∈R,s,s′∈S c(r,s)

c(r′,s′) .

Proof. Consider an edge ei of M ′ and assume Pi = PR
i . By Lemma 14, (ii),

t · c(PL
i ∩ML)− c(PL

i ∩MR) = φM
∗
i−1

t (PL
i ) ≥ φM

∗
i−1

t (Pi) = t · c(Pi ∩MR)− c(Pi ∩ML).

Therefore,

|Pi| = c(Pi ∩ML) + c(Pi ∩MR) ≤
(
1 + 1

t

)
· c(Pi ∩ML) + c(PL

i ∩ML).

As in Equation (6), we obtain |Pi| ≤ (t + 1) · c(Pi ∩MR). Together with the above, this
implies that cei = |Pi| ≤ c(Ii ∩MOPT) ·max{t+ 1, 1 + 1

t }. Since intervals corresponding to
the same depth in the path-forest are disjoint, we can bound the lengths of paths which are
of same depth by max{t + 1, 1 + 1

t } · OPT. As there are at most 2 · log(2−1/t) ∆ levels in
total, by Lemma 15, the theorem’s statement follows. J

5 Conclusion

In this paper, we give non-trivial results for the min-cost online bipartite matching problem
with recourse. The results were obtained simultaneously with and independently of Gupta
et al. [17] who consider also more general metrics than the line. We confirm that an average
recourse of O(logn) per request is sufficient to obtain an O(1)-competitive matching on the
line. It remains open if such a result can be obtained in a non-amortized setting, where the
recourse is available only per iteration. Our algorithm is clearly designed for the amortized
setting as it buffers online matching decisions and repairs them in batches.

Further, it remains open whether constant recourse per request is sufficient for maintaining
an O(1)-competitive matching on the line, as for the case of alternating requests. This may
be very well possible as there is, currently, no lower bound that rules this out.

Finally, we remind of a major open question in this field: Does there exist an O(1)-
competitive algorithm for online matching on the line without any recourse?
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