
Reconfigurable TAP Controllers with Embedded
Compression for Large Test Data Volume

Sebastian Huhn∗† Stephan Eggersglüß∗† Rolf Drechsler∗†

∗University of Bremen, Germany
{huhn,segg,drechsle}@informatik.uni-bremen.de

†Cyber-Physical Systems, DFKI GmbH
28359 Bremen, Germany

Abstract—The increasing modularity of state-of-the-art inte-
grated circuit designs leads to new requirements in terms of
accessibility during testing and debugging, particularly in post-
silicon phases. IEEE 1149.1 Test Access Port (TAP) controllers are
typically introduced to the design and certain external hardware
equipment is incorporated to enable the required access. However,
transferring large data through this TAP causes high costs. Thus,
an embedded compression architecture is introduced to the TAP
to significantly reduce the test application time and the test data
volume. Here, the retargeting of the test data is a crucial task.
This work presents a partition-based formal retargeting tech-
nique to take advantage of embedded compression while process-
ing even large and high-entropic test data. The proposed tech-
nique tackles the shortcomings of previously proposed retargeting
approaches, which require an impractical computational effort
for large test data volume or cause an adverse impact on the test
application time. For evaluating the proposed method, several
different test data sets have been processed to determine suitable
parameter sets. As shown by the results, this method allows to
compress even huge and high-entropic test data in average by
37.3% and to compress functional verification tests for state-
of-the-art industrial designs by up to 62.5%. Furthermore, any
adverse impact on the test application time is completely avoided
and the procedure always finishes within reasonable run-time.

I. INTRODUCTION

The semiconductor industry fabricates Integrated Cir-
cuits (ICs), which include a steadily increasing number of
nested sub-modules. This leads to new challenges in the field of
testing, particularly during system-level, board-level or in-field
testing as well as for post-silicon debug. For these applications,
a dedicated test access mechanism is introduced to the top-level
of the Circuit-under-Test (CuT) such that the sub-modules can
be still accessed in later production phases.

The IEEE 1149.1 Std. specifies such a Test Access Port (TAP),
which is frequently used in state-of-the-art industrial designs.
This TAP allows to transfer test data into the circuit while
utilizing specialized external test or debug equipment. In
general, such an equipment has strong resource limitations
and provides only low-bandwidth transfer, which lead both to
restricted testing capabilities.
Several techniques have been proposed over the past years,

which introduce additional hardware blocks to the CuT to
reduce the Test Data Volume (TDV). One prominent candidate
is the Embedded Deterministic Test (EDT) [1], which achieves a
significant TDV reduction for test patterns that were determined
by Automatic Test Pattern Generation tools. However, the
targeted data has to inherit certain properties. Thus, this
technique is not arbitrary applicable on any kind of data.

Furthermore, the EDT interface has to be accessed and served
by the specialized test or debug equipment, which is both not
possible in post-silicon phases.

Other compression techniques, which are well-known from the
field of software compression, have been implemented as stand-
alone hardware-blocks [2], [3]. For instance, work [4] drafts
a technique that provides run-length-encoding capabilities.
A static encoding scheme is proposed in work [5], which
works well for precomputed test data. Besides this, dictionary-
based approaches, e.g., [6], exist, which include a statically
programmed dictionary that works well for a priori known
test data. Further techniques like the Lempel-Ziv (LZ) [7],
[8] algorithm or the Golomb-Coding [9] have been also
implemented. These techniques are able to compress large data
volume easily but introduce a significant hardware overhead.
Furthermore, other approaches invoke a statistical encoding
scheme, e.g., word-level Huffman encoding [10], multi-level
Huffman encoding [11] or even more enhanced schemes [12],
[13]. However, none of them can neither incorporate certain
hardware constraints nor provide a standardized interface.

An embedded codeword-based compression technique, which
is directly integrated into the TAP controller, has been proposed
in [14]. This technique offers a powerful mechanism to achieve
a significant reduction of the TDV as well as of the Test
Application Time (TAT) while causing only a slight hardware
overhead. The test data has to be processed once by a preceding
retargeting procedure to take advantage of this embedded
compression. Two different types of retargeting techniques have
been proposed in the literature: structural as well as formal
techniques. Generally, both techniques achieve a significant
TDV reduction. The structural technique proposed in [14]
allows a very fast retargeting. However, a measurable overhead
concerning the TAT is introduced, particularly, while processing
high-entropic test data. In contrast, the formal technique of [15]
avoids any increase of TAT even in case of high-entropic data
processing but introduces a huge computational effort. Due to
a very high run-time, the application of formal techniques on
large TDV is limited.
This work proposes a new formal optimization-based tech-

nique, which incorporates a parameterizable partitioning
scheme to, eventually, determine multiple sets of optimal code-
words. The application of this scheme allows to process even
large test data by using formal techniques while consuming
only reasonable run-time. Consequently, massive advantages
are accomplished concerning the TAT reduction compared to
the previously proposed structural approach [14].

978-1-5386-0362-8/17/$31.00 c©2017 IEEE

Experiments are conducted on commercially representative
functional verification test data for a state-of-the-art softcore
microprocessor as well as on random test data, which is known
to be worst compressible due to the high entropy [16].
The structure of this paper is as follows: Section II briefly

describes the underlying codeword-based compression architec-
ture for TAP controllers and the existing retargeting techniques.
Subsequently, Section III draws the partitioning scheme for
the optimization-based procedure and the configuration of the
individual sets of codewords. Experimental results are shown in
Section IV distinguishing this work against previous approaches
and a beneficial parameter set is identified. Finally, Section V
summarizes the paper.

II. BACKGROUND

A TAP is typically integrated into the IC to address the
emerging challenges in the field of testing as well as of
debugging by combining several important functions, e.g.,
providing data access and test control features. The IEEE
1149.1 Std. (JTAG) [17] specifies a mechanism which is proven
to be well working, allocates only slight hardware resources in
sense of area and requires only five additional pins at top-level.
This TAP supports a certain set of instructions, which are
controlled by a central control unit. The wide dissemination
of JTAG has led to the development of a codeword-based
compression architecture with run-length encoding capabilities,
called VecTHOR as presented in [14], which will be briefly
described in the following Subsection II-A. Finally, the existing
retargeting approaches are briefly introduced in Subsection II-B.

A. Embedded Compression Architecture

VecTHOR can be seamlessly integrated into a standardized
IEEE 1149.1-compliant TAP controller and ensures the full
legacy support of the underlying JTAG protocol while allocating
only slightly more hardware resources. These properties are
achieved by extending the underlying control unit of the TAP
controller and by enhancing the instruction set: Two additional
instructions have been inserted to control the compression
scheme, e.g., enabling or disabling the compression mode.
Furthermore, a certain role has been assigned to the Test
Mode Select pin: Controlling specific operations as long as the
compression mode is active. The main component of VecTHOR
is the Dynamic Decompressing Unit (DDU), which holds a
dictionary of configurable entries with different codewords.
The overall flow is shown in Figure 1 and is as follows:

1) A retargeting framework is applied on the Uncompressed
Test Data (UTD), i.e., the original incoming test data, to
determine the configuration and generate the correspond-
ing Compressed Test Data (CTD).

2) The dictionary is dynamically programmed in the preload-
ing phase before the transfer of the CTD is performed.
Thus, it is required to determine a Configuration C that
defines the codewords which, subsequently, will occur
in the CTD. In fact, this CTD consists of numerous
concatenated codewords (all included in C).

3) Finally, the compression mode is activated and the CTD is
transferred to the TAP. Following this scheme means that
the DDU implements a function Ψ, which decompresses
on-chip the CTD with respect to the programmed C to

restore the identical UTD, i.e., Ψ(CTD, C) = UTD holds.
Hereby, Ψ splits the CTD again into single codewords,
which become resolved by the dictionary.

For the sake of simplicity, more advanced features have not
been taking into account in this description, e.g., the mechanism
to ensure that each and every possible incoming data can
be represented or the invocation of the run-length encoding
capability. We refer to [14], [15] for more information.

B. Retargeting Techniques

The results of the retargeting procedure has a strong influence
on the overall effectiveness of the compression technique. In
particular, the selection of beneficial codewords, which are
configured in the preloading phase, is most crucial for the final
TDV and TAT reduction.

Structural Approach [14]: This structural approach tries to
identify a suitable set of codewords based on their individual
number of occurrences, i.e., selecting the codewords which
occur most frequently in the UTD. In particular, all possible
permutations of all bit sequences (codewords) of supported
lengths (possible length of a dictionary entry) are considered
as candidates for codewords and their number of occurrences
are determined. The most frequent codewords are selected in
a greedy-like manner with respect to a cost metric for being
contained in the Configuration C. Due to the greedy manner,
the determined set of codewords is not optimal. Here, optimal
means a set of codewords which is most beneficial in sense of
TDV and TAT reduction.

Formal Approach [15]: This formal approach tackles the
shortcomings of structural approaches by utilizing a variation
of the Boolean Satisfiability (SAT) problem. The SAT problem
asks the question whether a satisfying solution for a given
Boolean function exists. This Boolean function Ω : {0, 1}n →
{0, 1} is satisfiable if an assignment of all variables exists
such that Ω = 1 holds, otherwise it is unsatisfiable [18].

An extension is the Pseudo-Boolean (PB)-SAT problem that
allows to integrate weights into the formula, which are used
to evaluate the costs of the determined solutions. Finally,
the Pseudo-Boolean-Optimization (PBO) problem, which is
actually used in the formal retargeting approach, extends the
PB-SAT problem by an objective function F . Thus, F allows to
assess the quality of the determined solution, i.e., it is possible
to determine the optimal solution with respect to certain (user-
defined) optimization criteria evaluated by F .

The given retargeting task is translated into a PBO problem Φ
that is built up incrementally by the following considerations:
Executing Basic Retargeting: The Boolean SAT instance is

built by processing the UTD, i.e., determining the CTD and the
codewords, which are defined by C. It has to be ensured that the
equivalence holds when the determined CTD is restored to the
UTD on-chip, which is done by applying the decompressing
unit (whose dictionary was dynamically configured with the
predetermined codewords).
Considering Hardware Constraints: The SAT instance is

extended by Pseudo-Boolean elements, i.e., weights which are
added to certain literals. This allows to consider the hardware
constraints, namely the maximal number of configurable entries
meaning the size of the embedded dictionary.

Uncompressed Test Data UTD

Determining Beneficial
Codewords

RETARGETING PROCEDURE
Configuration C

Generating Compressed
Test Data

Compressed Test Data
CTD

IC embedding VecTHOR

Configuration C

Decompressing CTD

Test Application

Figure 1: Overall compression flow of VecTHOR [14]

Apply Optimization: Defining a suitable optimization criteria
for reducing the result TDV or the TAT, respectively.

Afterwards, a powerful PBO solver [19] is invoked to calculate
a fulfilling and most beneficial solution to the given PBO
problem. The configuration C as well as the actual compressed
test data can be directly extracted out of the determined
solution such that the advantage of the embedded compression
architecture can be taken. The disadvantage is that this approach
needs excessive run-time for large TDV.

III. PARTITIONING SCHEME

The proposed partitioning and reconfiguration scheme is
described in the following section as follows: At first, the
basic principle of the proposed scheme is drafted, followed
by a detailed application example, the required modification
of the formal model and, finally, a discussion about the most
suitable parameter set for the scheme.
As shown in [15], the application of formal techniques

provides a powerful mechanism to determine the most bene-
ficial CTD as well as C leading to a reduction of the TDV.
This approach works well for small and mid-sized test data
volume, though, the maximum size of test data, which can be
processed,is strictly limited. This is due to the fact that the
PBO instance scales non-linearly with the size of the input
test data, the size of the PBO instance explodes by processing
large data. Even if well-engineered PBO solvers are available,
the run-time as well as the memory consumption, which is
required to solve the instance, is completely unsustainable.

A. Basic Principle

The basic idea of this work is to introduce a partitioning
scheme to a formal optimization-based retargeting procedure.
It is expected that this will significantly reduce the required run-
time and memory consumption to determine the CTD as well
as C. Primarily, it is targeted to, firstly, avoid a strong adverse
impact on the TAT as structural approaches cause and, secondly,
consuming only feasible run-time for the determination.

In fact, partitioning is a well-known approach to separate hard
computational tasks into multiple sub-tasks that are easier to
solve. Generally, this works fine if it is possible to divide the
overall computational task into multiple sub-tasks, which can
be processed independently. In particular, simply applying such
a partitioning on an optimization-based procedure implies that
typically only local optima are determined and, consequently,
the local optima can strongly deviate from the global optimum.
For transferring this idea to the given retargeting task, the

overall test data is split into different chunks. Each chunk is
then processed individually (sub-task), which strongly reduces

the required computational effort. As already stated above, two
critical challenges arise when partitioning is introduced:

1) The independence of the sub-tasks is not given, thus, the
data dependencies between these sub-tasks have to be
considered by the formal model.

2) A strong deviation exists between the local and the global
optimum – in sense of highest TDV and TAT reduction
– which will affect the effectiveness of the retargeting
procedure. To avoid an adverse impact on the global
effectiveness, each and every local optima must be reached
which implies that the local as well as the global optima
converge.

Local means that only one chunk (sub-task) of the overall test
data is processed, hence, a determined configuration works
best only for the specific chunk. Analogously, global refers
a configuration which is determined by considering all test
data at-once and works best globally. However, this calculation
requires a very high run-time for large TDV.
To address this deviation, it is targeted to accomplish all

local optima by reconfiguring the dictionary for each chunk,
however, this causes significant more configuration data. This
data overhead is tackled by introducing a partial reconfiguration
scheme, which is aware of the current state of the dictionary
and reconfigures entries only if beneficial.

B. Introducing Partitioning

In this work, partitioning means to split the overall UTD
into single parts –as stated in Definition 1 formally– and
to retarget each of these parts individually. To ensure the
correctness of the retargeting, several additional aspects have
to be considered while selecting and processing those partitions,
e.g., the equivalence must hold between UTD and the CTD
after decompression on-chip. Thus, the selection process of a
single partition must follow the scheme as stated in following
two definitions:

Definition 1. Let UTD be a sequence of bits (u1, u2, .., uN),
which represents the data to be partitioned and #UTD = N
the number of bits in the sequence.

Then, a partition Pi,j is defined as a coherent sub-sequence
(ui, ui+1, ui+2, ..., uj) with i ≤ j and i ≥ 1 and j ≤ N .

Furthermore, the size of partition Pi,j is defined by #Pi,j =
j − i+ 1.

Definition 2. Let Pi,j and P ′i′,j′ be two partitions of the UTD.
Then, the partitions P and P ′ are free of intersecting bits, i.e.,
j < i′ or j′ < i, respectively. That means Pi,j ∩ P ′i′,j′ = ∅,
i.e., no bit position in UTD is included in more than exactly
one partition.

Definition 3. Let UTD be the data to be partitioned and N
the length of this data.
Then, psize is the (maximum) partition size, which means

that ∀Pi,j : #Pi,j ≤ psize is valid for all partitions.
Furthermore, a complete partitioning of UTD is defined by the

ordered set of partitions P1, P2, ..., Pm with
∑m

l=1 (#Pl) = N
such that ∀Pi,j , Pi′,j′ : j = i′−1. This means that the ordered
sequence of partitions covers all bit positions of UTD in a
strict ascending order.

Even if the partition selection follows this sophisticated
scheme, the determined C is just optimal for a single partition
(local optimum). Preliminary experiments have shown that if
one set of locally optimal codewords is applied to the complete
data stream, the effectiveness of the approach is reduced, which
leads to a low reduction of the TDV as well as the TAT
compared to the ratios when globally optimal codewords are
applied.

Multiple Configurations: To tackle this problem, multiple
configurations are determined, one configuration for each pro-
cessed partition. This new configuration is used to reconfigure
the dictionary individually (partition-wise) as stated below.
Figure 1 shows that the embedded dictionary is configured by
Ci before the specific compress test data chunk ci is transferred
to the circuit-under-test (holding the TAP controller providing
VecTHOR).

As shown in Figure 1, the embedded dictionary is configured
by Ci before the specific compressed test data chunk ci is trans-
ferred to the circuit-under-test (holding the TAP controller with
embedded compression). This solves the problem concerning
local and global optima well, however, this also introduces
large configuration data leading to additional data bits as well
as cycles.

Partial Reconfiguration: To avoid an adverse impact on the
TDV and, particularly, on the TAT, the reconfiguration of the
dictionary is done only partially. Consequently, the retargeting
procedure considers the current state S of the dictionary, i.e,
the codewords, which have been configured while processing
the previous partition and targets to reuse already configured
entries for the following partition to, eventually, reduce the
overall configuration data as stated in Lemma 1.

Lemma 1. Given is an ordered sequence of partitions
(P1, P2, ..., Pm) and the current state S0 of the dictionary
at point of time t = 0, i.e., the codewords for all entries within.
The point of time t = 0 represents the initial state of the
dictionary (due to the synthesis of the TAP controller).

Then, the retargeting procedure ρ receives a partition Pi and
the current state Si−1, which is determined due to previous
configurations Cj with 0 ≤ j ≤ i − 1. Furthermore, a
configuration Ci is partial if only a subset of entries is included.

C. Example

To demonstrate this partial reconfiguration scheme, Table I
shows exemplary data for multiple reconfigurations of the
embedded dictionary by applying C0 to Cn. As stated, each
Ci was determined by ρ that processes the partition Pi

(representing a chunk of the UTD) with respect to the current
state of the dictionary. Column No. shows the number of the
dictionary entry, column C0 represents the default state of the

TABLE I: Reconfigurations of codewords C0 to Cn

No. C0 C1 . . . Cn−1 Cn
1 1111 01011010 1010 0111
2 0101 1110 00010110 0000
3 0110 0101 0110 11110001
4 00110011 10010110 01111000 00110010
5 01010101 1100 0011 Cn−1
6 1010 0101 00011111 01010101
7 0000 10001011 0111 Cn−1
8 10101010 11101010 1010 Cn−1
9 1000 10001111 Cn−2 Cn−2
10 1001 10010100 Cn−2 1000
11 0001 0100 Cn−2 Cn−2
12 11001100 11101111 Cn−2 Cn−2∑
C [bit] −A 79 44 36

A Default configuration due to synthesis.

dictionary, i.e., the default configuration which is programmed
due to synthesis. It is assumed that the dictionary holds 12
dynamically configurable entries, which can contain half-byte
or byte-long entries1. The columns C1 up to Cn represents the
state after applying the configuration Ci. The last line

∑
C

shows the size of the current configuration in bit.
In case of Cn−1 only entries 1 to 8 are included. Thus, entries 9

to 12 remain in the previous state. Cn also configures the
dictionary partially, in particular, the entries 11 and 12 are
not reconfigured either. In fact, these both entries remain in
the state in which they have been set several configuration
phases ago. This example clearly shows that the size of the
configuration data directly scales with the number of included
entries as well as with the length (half-byte or byte-long) entry -
the resulting size varies from 79 bit (C1) and 36 bit (Cn). Thus,
it is necessary to consider the resulting size of configuration
data while applying the partitioning scheme.

D. Integration of Reconfiguration

In Subsection II-B, an approach is briefly introduced to invoke
a PBO-solver to solve the retargeting task. Generally, the PBO
instance used to retarget the first partition P0 can be created
in a similar way. To retarget any succeeding partition Pi,j , all
clauses and variable assignments have to be removed from the
PBO instance, which refers to the UTD chunk (ui, ui+1, ..., uj).
Furthermore, the configuration state S of the dictionary has
to be extracted and stored after each and every retargeting
operation and, consequently, considered within every following
one. For this purpose, a function σ was implemented, which
includes the current state dictionary S, receives a codeword
CW and checks if CW is currently included in the dictionary
such that

σ(CW) =

{
1 if CW ∈ S
0 else

Besides this, the optimization function has to be modified such
that the configuration of an already configured codeword CW
(σ(CW) = 1) does not allocate any additional cost in sense
of configuration data.

E. Determining Parameter Set

At least two main parameters have to be adjusted properly,
which both strongly influence the size of the configuration data

1For a fair comparison, exactly the same parameters (hardware constraints)
are assumed as in both [14] and [15].

6 8 10 12 16384
32768

49152
0

5000
10000
15000
20000

R
un

-t
im

e
[s

]

Max. reconfigurations Max. partition size

R
un

-t
im

e
[s

]

−15
−10
−5
0
5

TA
T

re
du

ct
io

n
[%

]

Figure 2: Parameter Identification

as well as the consumed run-time for the retargeting procedure.
Consequently, we investigated the effect of the following two
parameters for random test data:

Maximal Number of Codewords in Reconfiguration: As
already shown in Table I, the overall size of the configuration
Ci directly scales with the number of codewords (included in Ci).
Furthermore, this number can not exceed the overall number
of dynamically configurable entries. We have investigated
reconfiguration ratios between full reconfiguration (100%),
half-reconfiguration (50%) and the two intermediate ratios
66.7% and 83.3%. However, these shares represent the maximal
number, hence, this does not necessarily mean that this number
of entries is actually reconfigured.

Maximal Partition Size: The maximum size of a partition
(psize) controls the computational effort, which is required
to process this partition. This effort, i.e., the size of the PBO
instance scales non-linearly with the size of the input data for
the retargeting procedures. Different partition sizes of 8K, 16K,
32K and 48K were investigated.
Figure 2 shows the parameter study for the investigated

psizes (8K, 16K, 32K, 48K) at the y-axis and the maximum
reconfigurations (6, 8, 10, 12) at the x-axis while processing
high-entropic test data with sizes from 16K to 1024K. Each
experimental run is represented by a data point and the resulting
run-time in sec. is plotted at the z-axis. Besides this, the
TDV reduction is stable with an average ratio of 37.3% and a
variance of 2.3%. However, the TAT varies between a slight
reduction but also between a slight increase (compared to non-
compressing data transfer). Hence, the TAT reduction in %
is represented by the gray coloring scheme: the lighter the
gray, the higher the TAT reduction and vice versa. As shown
by Figure 2, determining a suitable parameter set implies a
trade-off between a reduced TAT or a reduced run-time. The
results show that the parameter set of 12 reconfigurations and
a partition size of 32.768 bits represents a fair compromise.

IV. EXPERIMENTAL RESULTS

This section describes the experimental evaluation of the
proposed retargeting technique, which introduces a partitioning
scheme to a formal optimization-based procedure. Eventually,
the results are clearly distinguished against other existing
approaches as well as against the standardized JTAG without
any compression.
Two different classes of test data were considered for the

evaluation: high-entropy, random data with sizes of 8192 bytes

10

100

1000

10000

100000

0 200000
400000

600000
800000

1× 10 6

1.2× 10 6

R
un

-t
im

e
[s

]

Test data volume [bit]

opt
opt-lim

part

Figure 3: Comparison of run-time of retargeting techniques

(RTDR_8192) and 1048576 bytes (RTDR_1048576) as well as
functional verification test data for a state-of-the-art softcore
microprocessor. These function data was generated by cross-
compiling different test cases of MiBench [20]. The setup work
of [15] is used to ensure a fair comparison, i.e., two different
testbenches have been implemented, both simulating the data
transfer to the CuT: Firstly, testbench TBLEG implements a ref-
erence TAP controller [21] and, secondly, testbench TBCOMPR

embeds a TAP controller using a codeword-based compression
technique [14]. Both testbenches are fully compliant with IEEE
1149.1 Std. [17]. The setup assumes that the functional logic
block includes a Test Data Register (TDR), which operates
as a data sink. Different clock-gating schemes have been
implemented to prove the practicability.

All experiments were executed on an Intel Xeon E3-1270v3 3.5
GHz processor with 32 GB system memory. The Time-Out (TO)
was set to 86.400s and the Memory-Out (MO) was set to 30GB.
The original and uncompressed test data was processed by the
developed retargeting framework. This framework is written in
C++ and invokes clasp 3.1.4 as PBO solver [19] and, eventually,
generates the compressed test data as well as the configuration
for the embedded compression architecture.

The Tables II and III show the TDV as well as the TAT of the
conducted experiments. In particular, the following retargeting
techniques were conducted: heur, the structural technique [14],
the optimization-based techniques of work [15]: opt as well as
opt-lim, which alters the parameters of the PBO solver. The
column part presents the resulting TDV and TAT while using
the proposed partitioning scheme with psize = 16K and (up
to) a full-reconfiguration including the reconfiguration data
and time. Figure 3 shows the run-time comparison (logscale)
for different TDVs of both formal techniques [15] versus the
proposed part technique.

The TDV of part is stable and comparable to opt-lim as shown
in Table II. For instance, part allows to compress 1024K high-
entropic test data by 37.3% and functional verification data by
up to 62.8%. Furthermore, the experiments generally show that
the resulting TDV reduction is lower for high-entropic than for
functional verification test data. Concerning the TAT reduction
for the most critical high-entropic test data, the resulting TAT
reduction of part is slightly lower compared to opt-lim while
processing the hard-to-compress high-entropic data. However,
the ratios are significant less compared to using heur, though,
the ratios are lower compared to opt-lim while applying the
proposed technique on functional verification data. In case of

TABLE II: Benchmarks: Processing random test & functional verification data considering TDV

No. test name size [bit] data reduction [%]

leg heur [14] opt [15] opt-lim [15] part heur [14] opt [15] opt-lim [15] part

1 RTDR_8192 65.536 48.529 42.068 43.057 42.575 26.0 35.8 34.3 35.0
2 RTDR_16384 131.072 89.952 TO 83.476 84.312 31.4 TO 36.3 35.7
3 RTDR_32768 262.144 177.991 TO 166.299 164.700 32.1 TO 36.6 37.2
4 RTDR_65536 524.288 355.682 TO MO 327.448 32.2 TO MO 37.5
5 RTDR_131072 1.048.576 711.858 TO MO 657.303 32.1 TO MO 37.3

6 patricia 76.864 29.827 31.678 31.781 28.807 61.2 58.7 58.7 62.5
7 bmath 109.793 48.825 TO 50.013 46.545 55.5 TO 54.4 57.6
8 blowfish 143.232 73.579 TO 71.242 67.442 48.6 TO 50.3 52.9
9 cjpeg 703.648 423.315 TO TO 372.719 39.8 TO TO 47.0

10 djpeg 801.922 481.904 TO TO 417.133 39.9 TO TO 48.0

TABLE III: Benchmarks: Processing random test & functional verification data considering TAT

No. test name #data-cycles TAT reduction [%]

leg heur [14] opt [15] opt-lim [15] part heur [14] opt [15] opt-lim [15] part

1 RTDR_8192 65.541 71.847 64.420 64.494 65.744 -9.6 1.7 1.5 -0.3
2 RTDR_16384 131.077 151.351 TO 128.427 130.160 -15.5 TO 2.0 0.7
3 RTDR_32768 262.149 300.151 TO 257.168 257.912 -14.5 TO 1.9 1.6
4 RTDR_65536 524.283 600.532 TO MO 517.048 -14.5 TO MO 1.4
5 RTDR_131072 1.048.581 1.201.183 TO MO 1.046.149 -14.6 TO MO 0.2

6 patricia 76.869 51.622 54.870 54.926 50.705 32.8 28.6 28.5 34.0
7 bmath 109.798 82.875 TO 80.839 85.680 24.5 TO 26.4 22.0
8 blowfish 143.237 126.427 TO 55.426 114.233 11.7 TO 61.3 20.3
9 cjpeg 703.653 715.545 TO TO 626.735 -1.7 TO TO 10.9

10 djpeg 801.927 803.661 TO TO 707.152 -0.2 TO TO 11.8

processing 64K, heur causes a TAT increase of 14.5% while
part achieves a TAT reduction of 1.6%.
As clearly shown in Figure 3, the run-time of the proposed

approach scales with increasing data volume in a feasible way.
For instance, part consumes 119s to process 16K and 9987s to
process 1024K, i.e, the scale factor of run-time against volume
increase is 83.9

64 ≈ 1.31. In comparison to this, opt-lim scales
with 279.9

16 ≈ 17.49 while processing 16K to 256K before
exceeding the TO. opt has already exceeded the TO for 128K.

V. CONCLUSIONS

This paper proposed a new formal optimization-based retar-
geting technique to process even large and high-entropic test
data such that the advantages of compression-based TAPs can
be leveraged. The proposed retargeting technique incorporates
a partition-scheme to reduce the resulting search space of the
underlying formal model such that the computation terminates
in reasonable time. The basic embedded-dictionary principle of
VecTHOR is enhanced by a partial reconfiguration capability
to avoid any loss in effectiveness due to the reconfiguration
overhead. Experiments have shown that the run-time was signifi-
cantly reduced compared to other existing formal techniques. In
particular, the scaling factor of run-time vs. TDV was reduced
by magnitudes from 17.49 to 1.31 while retaining the TDV
and the TAT reduction ratios.

VI. ACKNOWLEDGMENT

This work was supported by the University of Bremen’s
graduate school SyDe, funded by the German Excellence
Initiative, by the subproject P01 ‘Predictive function’ of
the Collaborative Research Center SFB1232, funded by the
German Research Foundation, by the Institutional Strategy of
the University of Bremen, funded by the German Excellence
Initiative and by the German Research Foundation under
contract number EG 290/5-1.

REFERENCES
[1] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded deterministic test,”

IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 23, no. 5, pp. 776–
792, 2004.

[2] F. G. Wolff and C. Papachristou, “Multiscan-based test compression and hardware
decompression using LZ77,” in Int’l Test Conf., 2002, pp. 331–339.

[3] K. U. Irrgang and T. B. Preußer, “An LZ77-style bit-level compression for trace
data compaction,” in Field Programmable Logic and Applications, 2015, pp. 1–4.

[4] A. Jas, J. Ghosh-Dastidar, and N. Touba, “Scan vector compression/decompression
using statistical coding,” in VLSI Test Symp., 1999, pp. 114–120.

[5] V. Iyengar, K. Chakrabarty, and B. Murray, “Deterministic built-in pattern gener-
ation for sequential circuits,” Journal of Electronic Testing, vol. 15, no. 1-2, pp.
97–114, 1999.

[6] L. Li and K. Chakrabarty, “Test data compression using dictionaries with fixed-
length indices,” in VLSI Test Symp., 2003, pp. 219–224.

[7] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression,”
IEEE Trans. on Information Theory, vol. 23, no. 3, pp. 337–343, 1977.

[8] M. A. A. E. Ghany, A. E. Salama, and A. H. Khalil, “Design and implementation
of FPGA-based systolic array for LZ data compression,” in Circuits and Systems,
2007, pp. 3691–3695.

[9] A. Chandra and K. Chakrabarty, “System-on-a-chip test-data compression and
decompression architectures based on Golomb codes,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 20, no. 3, pp. 355–368, 2001.

[10] K. Ilambharathi, G. S. N. V. V. Manik, N. Sadagopan, and B. Sivaselvan,
“Domain specific hierarchical Huffman encoding,” Cornell University Library, vol.
abs/1307.0920, 2013.

[11] W. R. A. Dias and E. D. Moreno, “Code compression using multi-level dictionary,”
in IEEE Latin American Symp. on Circuits and Systems, 2013, pp. 1–4.

[12] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Multilevel huffman coding: An
efficient test-data compression method for ip cores,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 26, no. 6, pp. 1070–1083, 2007.

[13] ——, “Test data compression based on variable-to-variable huffman encoding with
codeword reusability,” IEEE Trans. on CAD of Integrated Circuits and Systems,
vol. 27, no. 7, pp. 1333–1338, 2008.

[14] S. Huhn, S. Eggersglüß, and R. Drechsler, “VecTHOR: Low-cost compression
architecture for IEEE 1149-compliant TAP controllers,” in IEEE European Test
Symp., 2016, pp. 1–6.

[15] S. Huhn, S. Eggersglüß, K. Chakrabarty, and R. Drechsler, “Optimization of
retargeting for IEEE 1149.1 TAP controllers with embedded compression,” in
Design, Automation and Test in Europe, 2017, pp. 578–583.

[16] K. Balakrishnan and N. Touba, “Relationship between entropy and test data
compression,” IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 26,
no. 2, pp. 386–395, 2007.

[17] “IEEE standard for test access port and boundary-scan architecture - redline,” IEEE
Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001) - Redline, pp. 1–899, 2013.

[18] N. Eén and N. Sörensson, “An extensible SAT solver,” in Int’l Conf. on Theory
and Applications of Satisfiability Testing, ser. Lecture Notes in Computer Science,
vol. 2919, 2004, pp. 502–518.

[19] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “Conflict-driven answer
set solving,” in Int’l Joint Conf. on AI, 2007, pp. 386–392.

[20] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.
Brown, “Mibench: A free, commercially representative embedded benchmark
suite,” in IEEE Int. Workshop on Workload Characterization, 2001., Dec 2001,
pp. 3–14.

[21] I. Mohor, “JTAG test access port (TAP),” 2009, http://opencores.org/project,jtag.

