EASE
SFB 1320: Everyday Activity Science and Engineering (EASE)
Informationen
Deutsche Forschungsgemeinschaft (DFG), Sonderforschungsbereich
Webseite: https://ease-crc.org
Laufzeit: 2017 - 2025 (Verl?ngerung bis 2029 m?glich)
Ansprechpartner: Dr. Robert Porzel????, Robin Nolte????????
?bersicht
Im DFG-Sonderforschungsbereich Everyday Activity in Science and Engineering (EASE) untersuchen wir, wie Roboter allt?gliche Aufgaben – wie z.B. kochen – mit der gleichen Geschicklichkeit wie Menschen bew?ltigen k?nnten. Als interdisziplin?res Forschungsprojekt beleuchtet EASE viele Facetten von Mensch- und Roboterbewegungsabl?ufen und Probleml?sungsstrategien rund um den Haushalt. Unsere Arbeitsgruppe beheimatet Wissenschaftler aus den Teilprojekten P01 und P05, mit unterschiedlichen Forschungsfragen:
- L?sst sich Sprache durch Simulation verstehen?
- Wie kann der Roboter den Verwendungszweck von ihn umgebenden Objekten kennenlernen?
- Wie lassen sich die Erinnerungen eines Roboters repr?sentieren (z.B. mit Hilfe von Ontologien)?
- Welche Prinzipien menschlicher Metakognition (?Denken über das Denken“) k?nnen den Roboter bei Planung, Ausführung und Fehlerbehebung von Aktionen unterstützen?
- Wie funktioniert die Kommunikation zwischen verschiedenen, hybriden Systemen, die den Roboter unterstützen (Neuronale Netzwerke, Logische Regelsysteme, Physiksimulation, etc.), und wie lassen sich deren Ausgaben zu für den Roboter sinnvollen Ergebnissen kombinieren?
- K?nnen wir Fragen des Roboters antizipieren, um Antworten vorauszuberechnen und sp?ter ohne Reaktionszeit parat zu haben?
In enger Zusammenarbeit mit anderen Forschungsgruppen und Teilprojekten entwickeln wir unterschiedliche Ans?tze, um diese Fragen zu beantworten. Beispielsweise programmieren wir eine hybride Query-Engine, welche die Koordination der verschiedenen Informationssysteme übernimmt. Die geloggten Anfragen plus Ausführungskontext sollen sp?ter mit maschinellen Lernverfahren zum Antizipieren verwendet werden.
Darüber hinaus modellieren wir die internen Kontrollsysteme des Roboters sowie ihre Abl?ufe, damit er eine Vorstellung von seinen eigenen Denkprozessen erh?lt und sie eigenst?ndig zu steuern lernt. Wenn der Roboter beispielsweise einen Becher nicht richtig greift, soll er den Planungsprozess zurückverfolgen, um die Fehlerursache und m?gliche L?sungen zu identifizieren: Wurde die Position des Bechers falsch wahrgenommen, sollte er noch einen Blick aus einer anderen Perspektive darauf werfen. Klemmt ein Gelenk, nimmt er besser den anderen Arm.