Publications
R. Bruggeman, Y. Choie, A. Pohl
Period functions for vector-valued Maass cusp forms of real weight, with an application to Jacobi Maass cusp forms
[arXiv]
M. Denker, M. Kesseb?hmer, A.O. Lopes, S.R.C. Lopes
Parametrized Families of Gibbs Measures and their Statistical Inference
[arXiv]
M. Kesseb?hmer, A. Niemann
Quantization dimensions of negative order
[arXiv]
L. Breitkopf, M. Kesseb?hmer, A. Pohl
Equidistribution of cusp points of Hecke triangle groups
[arXiv]
M. Kesseb?hmer, A. Niemann
Exact asymptotic order for generalised adaptive approximations
[arXiv]
M. Kesseb?hmer, L. Wiegmann
Approximation order of Kolmogorov, Gel'fand, and linear widths for Sobolev embeddings in euclidian measure spaces
[arXiv]
A. Pohl, P. Wabnitz
Selberg zeta functions, cuspidal accelerations, and existence of strict transfer operator approaches
[arXiv]
A. Pohl
Symbolic dynamics and transfer operators for Weyl chamber flows: a class of examples
[arXiv]
A. Adam, A. Pohl, A. Wei?e
Zero is a resonance of every Schottky surface
[arXiv]
A. Pohl, V. Spratte
A geometric reduction theory for indefinite binary quadratic forms over ?[λ]
[arXiv]
M. Kesseb?hmer, A. Niemann
Spectral dimensions of Krein-Feller operators in higher dimensions
[arXiv]
M. Schünemann, U. Ernst, M. Kesseb?hmer
A rigorous stochastic theory for spike pattern formation in recurrent neural networks with arbitrary connection topologies
[arXiv]
M. Kesseb?hmer, A. Niemann, T. Samuel, H. Weyer
Generalised Krein-Feller operators and gap diffusions via transformations of measure spaces
[arXiv]
M. Kesseb?hmer, S. Kombrink
Minkowski measurability of infinite conformal graph directed systems and application to Apollonian packings
[arXiv]
M. Doll, K. Fedosova, A. Pohl
Counting resonances on hyperbolic surfaces with unitary twists
To appear in: Commun. Anal. Geom.
[arXiv]
M. Kesseb?hmer, A. Niemann, T. Samuel, H. Weyer
Generalised Kre?n—Feller operators and gap diffusions via transformations of measure spaces.
To appear in: "From Classical Analysis to Analysis on Fractals. A Tribute to Robert Strichartz, Volume 2", Applied and Numerical Harmonic Analysis, Birkh?user, 2024.
[arXiv}
M. Doll, K. Fedosova, A. Pohl
Scattering theory with unitary twists
JAMA (2023)
[DOI | arXiv]
R. Bruggeman, A. Pohl
Eigenfunctions of transfer operators and automorphic forms for Hecke triangle groups of infinite covolume
Mem. Am. Math. Soc. 1423 (2023), vol. 287, 172+vii pp.
[DOI | arXiv]
M. Kesseb?hmer, A. Niemannn, S. Zhu
Quantization dimensions of compactly supported probability measures via Rényi dimensions
Trans. Amer. Math. Soc. 376 (2023), pp. 4661-4678.
[DOI | arXiv]
K. Fedosova, A. Pohl, J. Rowlett
Fourier expansions of vector-valued automorphic functions with non-unitary twists
Commun. Number Theory Phys. 17 (2023), no. 1, 173-248
[DOI | arXiv]
M. Steinherr Zazo, J. D. M. Rademacher
Bifurcation control for a ship maneuvering model with nonsmooth nonlinearities
(original title Nonlinear effects of stabilization in ship models with non-smooth nonlinearities using P-control)
SIAM J Control Optim., Vol. 61 (2023) No.1, 225-251.
[DOI | arXiv]
M. Kesseb?hmer, A. Niemann
Approximation order of Kolmogorov diameters via Lq-spectra and applications to polyharmonic operators.
Journal of Functional Analysis, Volume 282, Issue 9, 2022, Article 109598, ISSN 0022-1236
[DOI | arXiv]
M. Kesseb?hmer, A. Niemann
Spectral asymptotics of Krein-Feller operators for weak Gibbs measures on self-conformal fractals with overlaps
Advances in Mathematics, Volume 403 (2022), Paper No. 108384, ISSN 0001-8708.
[DOI | arXiv]
M. Kesseb?hmer, A. Niemann
Spectral dimensions of Krein-Feller operators and Lq-spectra.
Advances in Mathematics, Volume 399 (2022), Paper No. 108253, ISSN 0001-8708.
[DOI | arXiv]
A. Prugger, J.D.M. Rademacher, J. Yang
Geophysical fluid models with simple energy backscatter: explicit flows and unbounded exponential growth
Geophysical & Astrophysical Fluid Dynamics, 116:5-6, 374-410 (2022).
[DOI | arXiv]
M. Gr?ger, J. Jaerisch, M. Kesseb?hmer
Thermodynamic formalism for transient dynamics on the real line.
Nonlinearity 35, 1093–1118 (2022).
[DOI | arXiv]
S. Coriasco, M. Doll
Weyl Law on Asymptotically Euclidean Manifolds
Ann. Henri Poincaré 22 (2021)
[DOI | arXiv]
O. Bandtlow, A. Pohl, T. Schick, A. Wei?e
Numerical resonances for Schottky surfaces via Lagrange-Chebyshev approximation
Stoch. Dyn. 21, No. 03, 2140005, 30 pp. (2021)
[DOI | arXiv]
A. Pauthier, J.D.M. Rademacher, D. Ulbrich
Weak and strong interaction of excitation kinks in scalar parabolic equations
J Dyn Diff Equat (2021)
[DOI | arXiv]
A. Prugger, J.D.M. Rademacher
Explicit superposed and forced plane wave generalized Beltrami flows
IMA J Appl Math. Volume 86, Issue 4, August 2021, 761–784.
[DOI | arXiv]
P. Carter, J.D.M. Rademacher, B. Sandstede
Pulse replication and accumulation of eigenvalues
SIAM J. Math Anal., 53(3), 3520–3576. (2021)
[DOI | arXiv]
J. Yang, J.D.M. Rademacher.
Reaction-subdiffusion systems and memory: spectra, Turing instability and decay estimates.
IMA J Appl Math., Volume 86, Issue 2, April 2021, 27-73.
[DOI | arXiv]
J.D.M. Rademacher, Lars Siemer
Domain wall motion in axially symmetric spintronic nanowires
SIAM J. Appl. Dyn. Syst., 20(4), 2204–2235 (2021)
[DOI | arXiv]
J. Jaerisch, M. Kesseb?hmer, S. Munday
A multifractal analysis for cuspidal windings on hyperbolic surfaces.
Stochastics and Dynamics Vol. 21, No. 03, 2140007 (2021).
[DOI | arXiv]
M. Kesseb?hmer, J.D.M. Rademacher, D. Ulbrich
Dynamics and topological entropy of 1D Greenberg-Hastings cellular automata.
Ergodic Theory and Dynamical Systems 41 (2021), no. 5, 1397–1430.
[DOI | arXiv]
M. Steinherr Zazo, J.D.M. Rademacher
Lyapunov coefficients for Hopf bifurcations in systems with piecewise smooth nonlinearity
SIAM J. Appl. Dyn. Sys., 19(4), 2847-2886. (2020)
[DOI | arXiv]
M. Doll, A. Froehly and R. Schulz
A Partial Data Problem in Linear Elasticity
Inverse Problems 36 (2020)
[DOI | arXiv]
M. Doll, S. Zelditch
Schr?dinger Trace Invariants for Homogeneous Perturbations of the Harmonic Oscillator
J. Spectr. Theory 10 (2020)
[DOI | arXiv]
M. Kesseb?hmer, T. Schindler
Mean convergence for intermediately trimmed Birkhoff sums of observables with regularly varying tails.
Nonlinearity 33(10): 5543?–5566 (2020).
[DOI | arXiv]
M. Kesseb?hmer, T. Samuel, H. Weyer
Measure-geometric Laplacians for partially atomic measures.
Comment. Math. Univ. Carolin. 61, 313-335 (2020).
[DOI | arXiv]
Title of preprint: Measure-geometric Laplacians on the real line.
M. Kesseb?hmer, T. Schindler
Limit theorems for counting large continued fraction digits.
Lith Math J 60: 189–207 (2020).
[DOI | arXiv]
M. Kesseb?hmer, T. Samuel, K. Sender
The Sierpiński gasket as the Martin boundary of a non-isotropic Markov chain.
J. Fractal Geom.7: 113–136 (2020).
[DOI | arXiv]
M.Kesseb?hmer, T. Schindler
Intermediately trimmed strong laws for Birkhoff sums on subshifts of finite type.
Dynamical Systems. An International Journal 35(2): 275-305 (2020).
[DOI | arXiv]
A. Pohl, D. Zagier
Dynamics of geodesics, and Maass cusp forms
Enseign. Math. (2) 66 (2020), 305–340
[DOI | arXiv]
A. Pohl, L. Soares
Density of Resonances for covers of Schottky surfaces
J. Spectr. Theory 10 (2020), no. 3, 1053-1101
[DOI | arXiv]
K. Fedosova, A. Pohl
Eisenstein series twisted with non-expanding cusp monodromies
Ramanujan J. 51 (2020), no. 3, 649-670
[DOI | arXiv]
K. Fedosova, A. Pohl
Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy
Selecta Math. (N.S.) 26 (2020), no. 1, Paper no. 9 (55 p.)
[DOI | arXiv]
A. Adam, A. Pohl
A transfer-operator-based relation between Laplace eigenfunctions and zeros of Selberg zeta functions
Ergodic Theory Dynam. Systems 40 (2020), no. 3, 612-662
[DOI | arXiv]
L. Siemer, I. Ovsyannikov, J.D.M. Rademacher.
Inhomogeneous domain walls in spintronic nanowires.
Nonlinearity 33 (2020), 2905-2941.
[DOI | arXiv]
H. Vogt, J. Voigt.
Increasing sequences of sectorial forms.
Czechoslovak Math. J. 70 (2020), no. 4, 1033--1046.
[DOI | arXiv]
H. Vogt, J. Voigt.
On Hausdorff measure and an inequality due to Maz'ya.
Arch. Math. 114 (2020), no. 5, 573--583.
[DOI | arXiv]
M. Doll
Recurrence of Singularities for Second Order Isotropic Pseudodifferential Operators
Math. Nachr. 292 (2019)
[DOI | arXiv]
S. Coriasco, M. Doll, R. Schulz
Lagrangian distributions on asymptotically Euclidean manifolds
Ann. Mat. Pura App. 198 (2019)
[DOI | arXiv]
M. Baake, P. Gohlke, M. Kesseb?hmer, T. Schindler
Scaling properties of the Thue--Morse measure.
Discrete Contin. Dyn. Syst. Ser. A, 39(7): 4157?–4185 (2019).
[DOI | arXiv]
M. Kesseb?hmer, A. Mosbach, T. Samuel, M. Steffens
Diffraction of return time measures.
J. Stat. Phys. 174(3): 519–535 (2019).
[DOI | arXiv]
M. Kesseb?hmer, T. Schindler
Strong laws of large number for intermediately trimmed Birkhoff sums of observables with infinite mean.
Stochastic Processes and their Applications 129(10): 4163?–4207 (2019).
[DOI | arXiv]
M. Kesseb?hmer, T. Samuel, H. Weyer
Measure-geometric Laplacians for discrete distributions.
In Niemeyer et al., editor, Horizons of Fractal Geometry and Complex Dimensions, volume 731 of Contemp. Math., pages 133–142. Amer. Math. Soc., Providence, R.I. (2019).
[DOI | arXiv]
F. Dreher, M. Kesseb?hmer
Escape rates for special flows and their higher order asymptotics.
Ergod. Th. & Dynam. Sys. 39(6): 1501–1530 (2019).
[DOI | arXiv]
M. Kesseb?hmer, T. Schindler
Strong laws of large numbers for intermediately trimmed sums of i.i.d. random variables with infinite mean.
J.Theor. Probab., 32(2): 702–720 (2019).
[DOI | arXiv]
M. Gr?ger, M. Kesseb?hmer, A. Mosbach, T. Samuel, M. Steffens
A classification of aperiodic order via spectral metrics and Jarník sets.
Ergodic Theory and Dynamical Systems, 39(11): 3031?–3065 (2019).
[DOI | arXiv]
F. Naud, A. Pohl, L. Soares
Fractal Weyl bounds and Hecke triangle groups
Electron. Res. Announc. Math. Sci. 26 (2019), 24-35
[DOI | arXiv]
M. Chirilus-Bruckner, P. van Heijster, H. Ikeda, J.D.M. Rademacher.
Unfolding symmetric Bogdanov-Takens bifurcations for front dynamics in a reaction-diffusion system.
J. Non. Sc., 29 (2019), 2911-2953.
[DOI | arXiv]
C. Franzke, M. Oliver, J.D.M. Rademacher, G. Badin
Multi-Scale Methods for Geophysical Flows.
Chapter in "Energy transfers in atmosphere and ocean", Springer Mathematics of Planet Earth book series Vol. 1 (2019), 1-51.
[DOI | arXiv]
H. Vogt.
L∞-estimates for the torsion function and L∞-growth of semigroups satisfying Gaussian bounds.
Potential Anal. 51 (2019), no. 1, 37--47.
[DOI | arXiv]
M. Doll, O. Gannot and J. Wunsch
Refined Weyl Law for Homogeneous Perturbations of the Harmonic Oscillator
Comm. Math. Phys. 362 (2018)
[DOI | arXiv]
G. Fuhrmann, M. Gr?ger, T. J?ger
Non-smooth saddle-node bifurcations II: dimensions of strange attractors.
Ergodic Theory Dynam. Systems 38(8): 2989?–3011(2018).
[DOI | arXiv]
F. Dreher, M. Kesseb?hmer, A. Mosbach, T. Samuel, M. Steffens
Regularity of aperiodic minimal subshifts.
Bull. Math. Sci. 8(3): 413–434 (2018).
[DOI | arXiv]
A. Doelman, J.D.M. Rademacher, B. de Rijk, F. Veerman.
Destabilization mechanisms of periodic pulse patterns near a homoclinic limit.
SIAM J. Appl. Dyn. Sys. 17 ?(2018), 1833-1890. [pdf]
[DOI | arXiv]
B. Jacob, C. Tretter, C. Trunk, H. Vogt.
Numerical range and quadratic numerical range for damped systems.
Math. Methods Appl. Sci. 41 (2018), no. 16, 6546--6573. Paper Journal
[DOI | arXiv]
H. Vogt, J. Voigt.
Holomorphic families of forms, operators and C0-semigroups.
Monatsh. Math. 187 (2018), no. 2, 375--380. Abstract Paper
[DOI | arXiv]
M. Kesseb?hmer, S. Kombrink
A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory.
Discrete Contin. Dyn. Syst. -- Ser. S 2(10): 335–352 (2017).
[DOI | arXiv]
M. Kesseb?hmer, S. Zhu
The upper and lower quantization coefficient for Markov-type measures.
Mathematische Nachrichten 290(5-6): 827–839 (2017).
[DOI | arXiv]
Title of preprint: The quantization for Markov-type measures on a class of ratio-specified graph directed fractals.
A. Pohl
The category of reduced orbifolds in local charts,
J. Math. Soc. Japan 69 (2017), no. 2, 755-800
[DOI | arXiv]
S. Kadyrov , A. Pohl
Amount of failure of upper-semicontinuity of entropy in noncompact rank one situations, and Hausdorff dimension
Ergodic Theory Dynam. Systems 37 (2017), no. 2, 539-563
[DOI | arXiv]
C. Melcher, J.D.M. Rademacher.
Pattern formation in axially symmetric Landau-Lifshitz-Gilbert-Slonczewski equations.
J. Nonl. Sc. 27 ?(2017), 1551-1587. [pdf]
[DOI | arXiv]
A.F.M. ter Elst, Vitali Liskevich, Z. Sobol, H. Vogt.
On the Lp-theory of C0-semigroups associated with second-order elliptic operators with complex singular coefficients.
Proc. Lond. Math. Soc. 115 (2017), no. 4, 693--724.
[DOI | arXiv]
H. Vogt, J. Voigt.
Bands in Lp-spaces.
Math. Nachr. 290 (2017), no. 4, 632--638.
[DOI | arXiv]
M. Gr?ger, T. J?ger
Some remarks on modified power entropy.
Dynamics and Numbers, Contemp. Math. 669: 105–122 (2016).
[DOI | arXiv]
G. Fuhrmann, M. Gr?ger, T. J?ger
Amorphic complexity.
Nonlinearity 29(2): 528–565 (2016).
[DOI | arXiv]
M. Kesseb?hmer, T. Samuel, H. Weyer
A note on measure-geometric Laplacians.
Monatsh. Math. 181(3): 643–655 (2016).
[DOI | arXiv]
J. Kautzsch, M. Kesseb?hmer, T. Samuel
On the convergence to equilibrium of unbounded observables under a family of intermittent interval maps.
Ann. Henri Poincaré 17(9): 2585?–2621 (2016).
[DOI | arXiv]
M. Kesseb?hmer, S. Zhu
On the quantization for self-affine measures on Bedford-McMullen carpets.
Mathematische Zeitschrift 283(1): 39–58 (2016).
[DOI | arXiv]
V. Blomer, A. Pohl
The sup-norm problem for the Siegel modular space of rank two
Amer. J. Math. 138 (2016), 999-1027 (journal, | arXiv])
[DOI | arXiv]
A. Pohl
Symbolic dynamics, automorphic functions, and Selberg zeta functions with unitary representations
Contemp. Math. 669 (2016), 205-236 (journal, | arXiv])
[DOI | arXiv]
A. Pohl
Odd and even Maass cusp forms for Hecke triangle groups, and the billiard flow
Ergodic Theory Dynam. Systems 36 (2016), no. 1, 142-172 (journal, | arXiv])
[DOI | arXiv]
B. de Rijk, A. Doelman, J.D.M. Rademacher.
Spectra and stability of spatially periodic pulse patterns: Evans function factorization via Riccati transformation.
SIAM J. Math. Ana. 48?(2016), 61-121. [ | arXiv]]
[DOI | arXiv]
B. Li, T. Sahlsten, T. Samuel
Intermediate β-shifts of finite type.
Discrete Contin. Dyn. Syst. 36(1): 323–344 (2016).
[DOI | arXiv]
T. Das, B.O. Stratmann, M. Urbánski
Geometry of limit sets of discrete groups acting on real infinite-dimensional hyperbolic space.
Stochastics and Dynamics 16(5), 17 pages (2016).
[DOI | arXiv]
M. Haase, P. C. Kunstmann, H. Vogt.
On the numerical range of generators of symmetric L∞-contractive semigroups.
Arch. Math. 107 (2016), no. 5, 553--559. Abstract Paper Journal
[DOI | arXiv]
A. Manavi, H. Vogt, J. Voigt.
A note on absorption semigroups and regularity.
Arch. Math. 106 (2016), no. 5, 485--488. Abstract Journal
[DOI | arXiv]
K. Falk, K. Matsuzaki
The critical exponent, the Hausdorff dimension of the limit set and the convex core entropy of a Kleinian group.
Conf. Geom. Dyn. 19: 159–196 (2015).
[DOI | arXiv]
M. Kesseb?hmer, S. Zhu
Some recent developments in quantization of fractal measures.
Fractal geometry and stochastics V, Progr. Probab. 70: 105–120 (2015).
[DOI | arXiv]
J. Kautzsch, M. Kesseb?hmer, T. Samuel, B.O. Stratmann
On the asymptotics of the α-Farey transfer operator.
Nonlinearity 28: 143–166 (2015).
[DOI | arXiv]
M. Kesseb?hmer, S. Kombrink
Minkowski content and fractal Euler characteristic for conformal graph directed systems.
Journal of Fractal Geometry 2: 171–227 (2015).
[DOI | arXiv]
M. Einsiedler, S. Kadyrov, A. Pohl
Escape of mass and entropy for diagonal flows in real rank one situations
Israel J. Math 245 (2015), Vol. 210, no. 1, 245-295 (journal, | arXiv])
[DOI | arXiv]
A. Pohl
A thermodynamic formalism approach to the Selberg zeta function for Hecke triangle surfaces of infinite area
Comm. Math. Phys. 337 (2015), no. 1, 103-126 (journal, | arXiv])
[DOI | arXiv]
D. Zhelyasov, D. Han-Kwan, J.D.M. Rademacher.
Global stability and local bifurcations in a two-fluid model for tokamak plasma.
SIAM J. Appl. Dyn. Syst. 14?(2015), 730-763. [pdf]
[DOI | arXiv]
E. Siero, A. Doelman, M.B. Eppinga, J.D.M. Rademacher, M. Rietkerk and K. Siteur.
Stripe pattern selection by advective reaction-diffusion systems: resilience of banded vegetation on slopes.
CHAOS 25?(2015) 036411 [pdf]
[DOI | arXiv]
M. Chirilus-Bruckner, A. Doelman, P. van Heijster, J.D.M. Rademacher.
Butterfly catastrophe for fronts in a three-component reaction-diffusion-system.
J. Nonl. Sc. 25?(2015), 87-129. [pdf]
[DOI | arXiv]
H. Vogt.
L1-estimates for eigenfunctions and heat kernel estimates for semigroups dominated by the free heat semigroup.
J. Evol. Equ. 15 (2015), no. 4, 879--893. Abstract Journal
[DOI | arXiv]
M. Keller, D. Lenz, H. Vogt, R. Wojciechowski.
Note on basic features of large time behaviour of heat kernels.
J. Reine Angew. Math. 708 (2015), 73--95. Abstract Journal
[DOI | arXiv]
A.F.M. ter Elst, M. Sauter, H. Vogt.
A generalisation of the form method for accretive forms and operators.
J. Funct. Anal. 269 (2015), no. 3, 705--744. Abstract Journal
[DOI | arXiv]
S.M. Buckley, K. Falk
The boundary at infinity of a rough CAT(0) space.
Anal. Geom. Metric Spaces 2: 53–80 (2014).
[DOI | arXiv]
J. Jaerisch, M. Kesseb?hmer, S. Lamei
Induced topological pressure for countable state Markov shifts.
Stoch. Dyn. 14(2), 31 pages (2014).
[DOI | arXiv]
A. Pohl
Symbolic dynamics for the geodesic flow on two-dimensional hyperbolic good orbifolds
Discrete Contin. Dyn. Syst., Ser. A 34 (2014), no. 5, 2173-2241 (journal, | arXiv])
[DOI | arXiv]
K. Siteur, E. Siero, M. Eppinga, J.D.M. Rademacher, A. Doelman, M. Rietkerk.
Beyond Turing: the response of patterned ecosystems to environmental change.
Ecological Complexity 20 (2014), 81-96.
[DOI | arXiv]
M. Meyries, J.D.M. Rademacher, E. Siero.
Quasilinear parabolic reaction-diffusion systems: user's guide to well-posedness, spectra and stability of travelling waves.
SIAM J. Appl. Dyn. Sys. 13?(2014), 249-275. Preprint [pdf]
[DOI | arXiv]
H. Uecker, D. Wetzel, J.D.M. Rademacher.
pde2path - A Matlab package for continuation and bifurcation in 2D elliptic systems
Num. Math.: Th. Meth. Appl.?7 (2014), 58-106. Preprint [ | arXiv], code]
[DOI | arXiv]
F. Dreher, T. Samuel
Continuous images of Cantor's ternary set.
Amer. Math. Monthly 121(7): 640–643 (2014).
[DOI | arXiv]
T. Samuel, N. Snigireva, A. Vince
Embedding the symbolic dynamics of Lorenz maps.
Math. Proc. Camb. Phil. Soc. 156(3): 505–519 (2014).
[DOI | arXiv]
C. Seifert, H. Vogt.
A weak Gordon type condition for absence of eigenvalues of one-dimensional Schr?dinger operators.
Integral Equations and Operator Theory 78 (2014), no. 3, 383--405. Abstract Journal
[DOI | arXiv]
S.M. Buckley, K. Falk
Natural maps between CAT(0) boundaries.
New York J. Math. 19: 13–22 (2013).
[DOI | arXiv]
M. Gr?ger, T. J?ger
Dimensions of attractors in pinched skew products.
Comm. Math. Phys. 320(1): 101–119 (2013).
[DOI | arXiv]
M. Gr?ger, B.R. Hunt
Coupled skinny baker's maps and the Kaplan-Yorke conjecture.
Nonlinearity 26(9): 2641?–2667 (2013).
[DOI | arXiv]
J. Jaerisch, M. Kesseb?hmer, B.O. Stratmann
A Fréchet law and an Erd?s-Philipp law for maximal cuspidal windings.
Ergodic Theory Dynam. Systems 33(4): 1008–1028 (2013).
[DOI | arXiv]
M. Kesseb?hmer, T. Samuel
Spectral metric spaces for Gibbs measures.
J. Funct. Anal. 31: 1801–1828 (2013).
[DOI | arXiv]
A. Pohl
Period functions for Maass cusp forms for \Gamma_0(p): a transfer operator approach
International Mathematics Research Notices (2013) Vol. 14, 3250-3273; (journal, | arXiv])
[DOI | arXiv]
M. M?ller, A. Pohl
Period functions for Hecke triangle groups, and the Selberg zeta function as a Fredholm determinant
Ergodic Theory Dynam. Systems 33 (2013), no. 1, 247-283 (journal, | arXiv])
[DOI | arXiv]
J.D.M. Rademacher.
First and second order semi-strong interaction in reaction-diffusion systems
SIAM J. Appl. Dyn. Syst., 12?(2013), 175-203. Preprint [pdf]
[DOI | arXiv]
S. van der Stelt, A. Doelman, G. Hek, J.D.M. Rademacher.
Rise and fall of periodic patterns for a Generalized Klausmeier-Gray-Scott model
J. Nonl. Sc. 23 (2013), 39-95. Preprint [pdf]
[DOI | arXiv]
T. Samuel
A simple proof of Vitali's theorem for signed measures.
Amer. Math. Monthly 120(7): 654–660 (2013).
[DOI | arXiv]
E. Mihailescu, B.O. Stratmann
Upper estimates for stable dimensions of fractal sets with variable numbers of foldings.
International Mathematics Research Notices, rnt168, 23 pages (2013).
[DOI | arXiv]
S.M. Buckley, K. Falk
Rough CAT(0) spaces.
Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 55(103), no. 1: 3–33 (2012).
[DOI | arXiv]
J. Bohnstengel, M. Kesseb?hmer
Multiresolution analysis for Markov Interval Maps.
Numer. Funct. Anal. and Optim. 33(7-9): 791–832 (2012).
[DOI | arXiv]
M. Kesseb?hmer, S. Kombrink
Fractal curvature measures and Minkowski content for self-conformal subsets of the real line.
Adv. in Math. 230: 2474?–2512 (2012).
[DOI | arXiv]
Title of preprint: Fractal curvature measures and Minkowski content for one-dimensional self-conformal sets.
M. Kesseb?hmer, B.O. Stratmann
A dichotomy between uniform distributions of the Stern-Brocot and the Farey sequence.
Unif. Distrib. Theory 7(2): 21–33 (2012).
[DOI | arXiv]
M. Kesseb?hmer, S. Munday, B.O. Stratmann
Strong renewal theorems and Lyapunov spectra for α-Farey and α-Lüroth systems.
Ergod. Theory Dyn. Syst. 32(3): 989?–1017 (2012).
[DOI | arXiv]
M. Kesseb?hmer, B.O. Stratmann
A note on the algebraic growth rate of Poincaré series for Kleinian groups.
Contributions in analytic and algebraic number theory, Springer Proc. Math., 9, Springer, New York, (2012), 237–245.
[DOI | arXiv]
M. Kesseb?hmer, B.O. Stratmann
On the asymptotic behaviour of the Lebesgue measure of sum-level sets for continued fractions.
Discrete Contin. Dyn. Syst. 32(7): 2437?–2451 (2012).
[DOI | arXiv]
Title of preprint: On the Lebesgue measure of sum-level sets for continued fractions.
U. Freiberg, S. Kombrink
Minkowski content and local Minkowski content for a class of self-conformal sets.
Geom. Dedicata 159(1): 307–325 (2012).
[DOI | arXiv]
A. Pohl
A dynamical approach to Maass cusp forms
J. Mod. Dyn. 6 (2012), no. 4, 563-596 (journal, | arXiv])
[DOI | arXiv]
A. Doelman, J.D.M. Rademacher, S van der Stelt.
Hopf dances near the tips of Busse balloons
Discr. Cont. Dyn. Sys. 5 (2012), 61-92. Preprint [pdf]
[DOI | arXiv]
M. Denker, B.O. Stratmann
The Patterson measure: classics, variations and applications.
Contributions to Analytic and Algebraic Number Theory - Festschrift for S. J. Patterson, Series: Springer Proceedings in Mathematics, Vol. 9, Blomer, Valentin; Mih?ilescu, Preda (Eds.) (2012), 171-195.
[DOI | arXiv]
J. Bohnstengel, P. Jorgensen
Geometry of spectral pairs.
Anal. Math. Phys. 1(1): 69–99 (2011).
[DOI | arXiv]
J. Jaerisch, M. Kesseb?hmer
Regularity of multifractal spectra of conformal iterated function systems.
Trans. Amer. Math. Soc. 363(1): 313–330 (2011).
[DOI | arXiv]
K. Falconer, T. Samuel
Dixmier traces and coarse multifractal analysis.
Ergod. Theory Dyn. Syst. 31: 369–381 (2011).
[DOI | arXiv]
J. Bohnstengel, M. Kesseb?hmer
Wavelets for iterated function systems.
J. Funct. Anal. 259(3): 583–601 (2010).
[DOI | arXiv]
J. Jaerisch, M. Kesseb?hmer
The arithmetic-geometric scaling spectrum for continued fractions.
Ark. Mat. 48(2): 335–360 (2010).
[DOI | arXiv]
A. Pohl
Ford fundamental domains in symmetric spaces of rank one
Geom. Dedicata 147 (2010), 219-276 (journal, | arXiv])
[DOI | arXiv]
J.A. Sherratt, M.J. Smith, J.D.M. Rademacher.
Patterns of Sources and Sinks in the Complex Ginzburg-Landau Equation with Zero Linear Dispersion.
SIAM J. Appl. Dyn. Syst.? 9 (2010), 883-918. Preprint [pdf]
[DOI | arXiv]
J.D.M. Rademacher
Lyapunov-Schmidt Reduction for Unfolding Heteroclinic Networks of Equilibria and Periodic Orbits with Tangencies
J. Diff. Eq. 249?(2010), 305-348. Preprint [pdf]
[DOI | arXiv]
M. Herrmann, J.D.M. Rademacher
Heteroclinic travelling waves in convex FPU-type chains
SIAM J. Math. Ana. 42?(2010), 1483-1504. Preprint [pdf]
[DOI | arXiv]
M. Herrmann, J.D.M. Rademacher
Riemann solvers and undercompressive shocks of convex FPU chains
Nonlinearity 23?(2010), 277-304. [pdf]
[DOI | arXiv]
K. Falk, K. Matsuzaki, B.O. Stratmann
Checking atomicity of conformal ending measures for Kleinian groups.
Conform. Geom. Dyn. 14: 167–183 (2010).
[DOI | arXiv]
H. Vogt.
An Eberlein-?mulian type result for the weak* topology.
Arch. Math. 95 (2010), no. 1, 31--34. Abstract Journal
[DOI | arXiv]
S.M. Buckley, K. Falk, D.J. Wraith
Ptolemaic spaces and CAT(0).
Glasgow Math. J. 51: 301–314 (2009).
[DOI | arXiv]
T. Jordan, M. Kesseb?hmer, M. Pollicott, B.O. Stratmann
Sets of nondifferentiability for conjugacies between expanding interval maps.
Fund. Math. 206: 161–183 (2009).
[DOI | arXiv]
M. Kesseb?hmer, B.O. Stratmann
H?lder-differentiability of Gibbs distribution functions.
Math. Proc. Cambridge Philos. Soc. 147(2): 489–503 (2009).
[DOI | arXiv]
A.R. Champneys, E. Knobloch, V. Kirk, B.E. Oldeman, J.D.M. Rademacher
Unfolding a tangent equilibrium-to-periodic heteroclinic cycle
SIAM J. App. Dyn. Sys.? 8 (2009), 1261-1304.
[DOI | arXiv]
M.J. Smith, J.D.M. Rademacher, J.A. Sherratt.
Absolute stability of wavetrains can explain spatiotemporal dynamics in reaction-diffusion systems of lambda-omega type.
SIAM J. App. Dyn. Sys.? 8 (2009), 1136-1159.
[DOI | arXiv]
J.A. Sherratt, M.J. Smith, J.D.M. Rademacher
Locating the transition from periodic oscillations to spatiotemporal chaos in the wake of invasion
Proc. Nat. Acad. Sc. 106:?10890-10895 (2009).
[DOI | arXiv]
J. Schmeling, B.O. Stratmann
The Hausdorff dimension of the set of dissipative points for a Cantor-like model set for singly cusped parabolic dynamics.
Kodai Math. J. 32(2): 179–196 (2009).
[DOI | arXiv]
S. ELMourchid, A. Rhandi, H. Vogt, J. Voigt.
A sharp condition for the chaotic behaviour of a size structured cell population.
Differential Integral Equations 22 (2009), no. 7--8, 797--800.
[DOI | arXiv]
H. Vogt.
The regular part of symmetric forms associated with second-order elliptic differential expressions.
Bull. Lond. Math. Soc. 41 (2009), no. 3, 441--444.
[DOI | arXiv]
H. Vogt.
A lower bound on the first spectral gap of Schr?dinger operators with Kato class measures.
Ann. Henri Poincaré 10 (2009), no. 2, 395--414.
[DOI | arXiv]
P. Bonfert-Taylor, K. Falk, E.C. Taylor
Gaps in the exponent spectrum of subgroups of discrete quasiconformal groups.
Kodai Math. J. 31(1): 68–81 (2008).
[DOI | arXiv]
M. Kesseb?hmer, B.O. Stratmann
Fractal analysis for sets of non-differentiability of Minkowski's question mark function.
J. Number Theory 128(9): 2663?–2686 (2008).
[DOI | arXiv]
M. Kesseb?hmer, M. Slassi
Large deviation asymptotics for continued fraction expansions.
Stoch. Dyn. 8(1): 103–113 (2008).
[DOI | arXiv]
M. Kesseb?hmer, B.O. Stratmann
Refined measurable rigidity and flexibility for conformal iterated function systems.
New York J. Math. 14: 33–51 (2008).
[DOI | arXiv]
M. Kesseb?hmer, M. Slassi
A distributional limit law for the continued fraction digit sum.
Math. Nachr. 281(9): 1294–1306 (2008).
[DOI | arXiv]
J. Hilgert , A. Pohl
Symbolic dynamics for the geodesic flow on locally symmetric orbifolds of rank one
Infinite Dimensional Harmonic Analysis IV, World Scientific, 2008
[DOI | arXiv]
A.A. Shah, J. Brindley, A.C. McIntosh, J.D.M. Rademacher
The effects of heat exchange and fluid production on the ignition of a porous solid
Nonlinear Anal.: Real World Appl.? 9 (2008), 562-584.
[DOI | arXiv]
H. Vogt, J. Voigt.
Modulus semigroups and perturbation classes for linear delay equations in Lp.
Positivity 12 (2008), no. 1, 167--183.
[DOI | arXiv]
M. Kesseb?hmer, M. Urbański
Higher-dimensional multifractal value sets for conformal infinite graph directed Markov systems.
Nonlinearity 20(8): 1969–1985 (2007).
[DOI | arXiv]
M. Kesseb?hmer, B.O. Stratmann
Homology at infinity; fractal geometry of limiting symbols for modular subgroups.
Topology 46(5): 469–491 (2007).
[DOI | arXiv]
Title of preprint: Limiting modular symbols and their fractal geometry.
M. Kesseb?hmer, M. Slassi
Limit laws for distorted critical return time processes in infinite ergodic theory.
Stoch. Dyn. 7(1): 103–121 (2007).
[DOI | arXiv]
Title of preprint: Critical waiting time processes in infinite ergodic theory.
M. Kesseb?hmer, M. Stadlbauer, B.O. Stratmann
Lyapunov spectra for KMS states on Cuntz-Krieger algebras.
Math. Z. 256(4): 871–893 (2007).
[DOI | arXiv]
Title of preprint: Radon--Nikodym representations of Cuntz--Krieger algebras and Lyapunov spectra for KMS states.
A. Pohl
An upper bound for the period length of a quadratic irrational
Abh. Math. Sem. Univ. Hamburg 77 (2007), 129-136 (journal)
[DOI | arXiv]
J.D.M. Rademacher, B. Sandstede, A. Scheel
Computing absolute and essential spectra using continuation
Physica D 229?(2007), 166-183.
[DOI | arXiv]
J.D.M. Rademacher, A. Scheel
Instabilities of Wave Trains and Turing Patterns in Large Domains
Int. J. Bif. Chaos 17?(2007), 2679-2691. (special issue for Andre Vanderbauwhede's 60th birthday)
[DOI | arXiv]
J.D.M. Rademacher, A. Scheel
The saddle-node of nearly homogeneous wave trains in reaction-diffusion systems
J. Dyn. Diff. Eqns. 19?(2007), 479-496.
[DOI | arXiv]
P. Kunstmann, H. Vogt.
Weighted norm estimates and Lp-spectral independence of linear operators.
Colloq. Math. 109 (2007), no. 1, 129--146.
[DOI | arXiv]
J.D.M. Rademacher
Geometric relations of absolute and essential spectra of wave trains
SIAM J. Appl. Dyn. Sys.? 5 (2006), 634-649. [pdf]
[DOI | arXiv]
J.D.M. Rademacher, R.W. Wittenberg
Viscous shocks in the destabilized Kuramoto-Sivashinsky equation
J. Comp. Nonl. Dyn.? 1 (2006), 336-347. (special issue for Phil Holmes' 60th birthday) [pdf]
[DOI | arXiv]
V. Liskevich, H. Vogt, J. Voigt.
Gaussian bounds for propagators perturbed by potentials.
J. Funct. Anal. 238 (2006), no. 1, 245--277.
[DOI | arXiv]
J.D.M. Rademacher
Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit
J. Diff. Eqns. 218?(2005), 390-443. [corrected pdf]
[DOI | arXiv]
M. Stein, H. Vogt, J. Voigt.
The modulus semigroup for linear delay equations III.
J. Funct. Anal. 220 (2005), no. 2, 388--400.
[DOI | arXiv]
A. Manavi, H. Vogt, J. Voigt.
Domination of semigroups associated with sectorial forms.
J. Operator Theory 54 (2005), no. 1, 9--25. Journal
Abstract
[DOI | arXiv]
H. Vogt.
Lp-analyticity of Schr?dinger semigroups on Riemannian manifolds.
Evolution equations (Warsaw, 2001), 73--80, Banach Center Publ., 60, Polish Acad. Sci., Warsaw, 2003.
[DOI | arXiv]
H. Vogt, J. Voigt.
Wentzell boundary conditions in the context of Dirichlet forms.
Adv. Differential Equations 8 (2003), no. 7, 821--842.
[Journal | arXiv]
V. Liskevich, Z. Sobol, H. Vogt.
On the Lp-theory of C0-semigroups associated with second-order elliptic operators. II.
J. Funct. Anal. 193 (2002), no. 1, 55--76. Abstract Journal
[DOI | arXiv]
Z. Sobol, H. Vogt.
On the Lp-theory of C0-semigroups associated with second-order elliptic operators. I.
J. Funct. Anal. 193 (2002), no. 1, 24--54. Abstract Journal
[DOI | arXiv]
H. Vogt, J. Voigt.
A monotonicity property of the Γ-function.
JIPAM (J. of Ineq. in Pure and Applied Math.) 3 (2002), no. 5, Article 73.
Abstract
[DOI | arXiv]
U. Brehm, P. Hinow, H. Vogt, J. Voigt.
Moment inequalities and central limit properties of isotropic convex bodies.
Math. Zeitschr. 240 (2002), no. 1, 37--51.
[DOI | arXiv]
U. Brehm, H. Vogt, J. Voigt.
Permanence of moment estimates for p-products of convex bodies.
Studia Math. 150 (2002), no. 3, 243--260.
Abstract
[DOI | arXiv]
H. Vogt.
Equivalence of Pointwise and Global Ellipticity Estimates.
Math. Nachr. 237 (2002), no. 1, 125--128.
[DOI | arXiv]
V. Liskevich, H. Vogt.
On Lp-spectra and essential spectra of second-order elliptic operators.
Proc. London Math. Soc. (3) 80 (2000), no. 3, 590--610. Abstract Journal
[DOI | arXiv]
H. Vogt.
On the constant in real Riesz-Thorin interpolation.
Arch. Math. 71 (1998), no. 2, 112--114. Abstract Journal
[DOI | arXiv]