Projects

 

This page is under construction.

Digi-Spotlights – Ein Lehrkonzept zur Verzahnung und Vernetzung von fachwissenschaftlichen und fachdidaktischen Inhalten im Lehramtsstudium

The Digi-Spotlights project is an interdisciplinary and cross-disciplinary sub-project of the overall project "Schnittstellen gestalten" of the Qualit?tsoffensive Lehrerbildung, funded by the Federal Ministry of Education and Research.

Project period: January 2016 - June 2019 (1st phase) and July 2019 - December 2023 (2nd phase)

Participants of the project: Prof. Dr. Angelika Bikner-Ahsbahs (leader of the project 1st phase, mathematics), Prof. Dr. Marcus Callies (English), Prof. Dr. Andreas Klee (Politics), Prof. Dr. Christine Knipping (leader of the project 2nd phase, Mathematics), Dr. Fiene Bredow, Dr. Erik Hanke, Stefanie Hehner, Nelli Mehlmann, Nils Quentel, Dr. Ingolf Sch?fer, Daniela Schansker, Dr. Hendrik Schr?der

What is it about?

While students, who want to become teachers, often very much welcome subject didactics in their studies because of their direct reference to teaching practice, the relevance of subject-specific courses for the teaching profession is less obvious to many. Also, connections between subject-specific science and other parts of the course, such as subject-specific didactics, are not always recognized.

In Digi-Spotlights, innovative teaching concepts (spotlights) are developed and refined that systematically interlink subject-specific and subject-specific didactic elements in university teacher training. This interlocking is examined with regard to the interconnection of the two content areas in the thinking and actions of students.

In the (further) developed teaching concepts of the three model concepts in the subjects English, mathematics and politics, subject-specific content is didactically prepared by the students and practically tested in a teaching experiment with students.

Further information can be found on the website of the Digi-Spotlights project.

Current doctoral projects

Marie-Theres Brehm

RisK-Design: Entwicklung von Risiko-Kompetenz im Stochastikunterricht. Eine Design-Based-Research Studie in der Sekundarstufe I

In her dissertation project, Marie-Theres Brehm deals with the development of risk competence in stochastics lessons. As part of the design-based research study, she developed a series of lessons on data- and concept-based statistical reasoning in the field of stochastics, which was tested with different school classes in Bremen in grades 9 and 10. Within the series of lessons, the work, evaluation and interpretation of data is focused on risk-related questions. Empirically based individual conceptions of risk and facets of risk competence are to be investigated.


The project is supervised by Prof. Dr. Angelika Bikner-Ahsbahs.

Luisa Gunia

?nderungen qualitativ denken – Argumentieren mit unterschiedlichen Sichtweisen auf den Funktions- und den Ableitungsbegriff

In her dissertation project, Luisa Gunia deals with imagination-oriented and conceptual argumentation in the field of qualitative analysis. For this purpose, she has developed a series of lessons on functional thinking in the area of ??analysis that is geared toward students' understanding and tested it with various school classes in Bremen in the introductory phase. Within the series of lessons, different perspectives on the concept of function and derivation and the interaction between existence and change are opened up. The aim is to examine what effects the change of perspective has on the arguments and argumentations produced by the students and which ideas about the concept of function and the concept of derivation are activated in each case.

The project is supervised by Prof. Dr. Christine Knipping.

Martin Ohrndorf

Explainer videos affect the learning of functions!?

In his dissertation project, Martin Ohrndorf is working qualitatively and quantitatively on the analysis of explainer videos and their effect on the learning of functions. First, Martin qualitatively examined explainer videos from YouTube and Sofatutor for three different types of learning opportunities: opportunities to establish validity (German: Geltung), opportunities to understand the function concept and opportunities to build relationships. Based on the opportunities to understand the function concept, a test on the conceptual knowledge of functions was developed in collaboration with Insa Mei?ner (University of Bremen). In a quasi-experimental pre-post design, the knowledge of 8th and 9th grade students was tested. In a first cohort, knowledge was examined in relation to the subjective perception of one's own knowledge of functions. In a second cohort, in collaboration with Vanessa Gross (University of Bremen), knowledge was examined in relation to the parasocial relationship using the videos and math anxiety.

In addition, Martin is working on a systematic literature analysis in collaboration with Sina Wetzel (University of Frankfurt am Main), Matthias Knippers (University of Bielefeld), Julia Marie Stechemesser (University of Duisburg-Essen), Juliane Wefers (University of Bielefeld) and Lia Brüggemeyer (University of Dortmund). With this literature analysis, they want to answer the question to what extent different definitions of mathematical explainer videos occur in the literature and on which underlying theories these definitions are based.

The project is supervised by Prof. Dr. Maike Vollstedt in collaboration with Prof. Dr. Florian Schmidt-Borcherding.

 

Reviewed conference and journal papers are marked with an asterisk (*).

* Ohrndorf, M., Mei?ner, I., Schmidt-Borcherding, F. & Vollstedt, M. (accepted). Reconstruction of opportunities to understand the function concept from online explainer videos. Thirteenth Congress of the European Society for Research in Mathematics Education (CERME13). Budapest, Hungary.

Ohrndorf, M., Vollstedt, M., & Schmidt-Borcherding, F. (2023). Rekonstruktion von Angeboten zur Herstellung von Geltung in Erkl?rvideos zu Funktionen – (Wie) geht das? Beitr?ge Zum Mathematikunterricht 2022

, 1073-1076. Frankfurt a. M., Germany: 56. Jahrestagung der Gesellschaft für Didaktik der Mathematik. doi.org/10.17877/DE290R-23389

Ohrndorf, M. (2021). Verstehen verstehen. Eine Pilotstudie zur ?berprüfung der Eye-Mind-Hypothese bei multimedialen Lernprozessen von Funktionen

. WTM-Verlag Münster. doi.org/10.37626/GA9783959873000.0

16.03.2022Rekonstruktion von Angeboten zur Herstellung von Geltung in mathematischen Erkl?rvideos: (Wie) geht das?28. Kongress der Deutschen Gesellschaft für Erziehungswissenschaft (DGfE-Kongress 2022) digital
31.08.2022Rekonstruktion von Angeboten zur Herstellung von Geltung in mathematischen Erkl?rvideos: (Wie) geht das?56. Jahrestagung der Gesellschaft für Didaktik der Mathematik (GDM-Tagung 2022) an der Goethe-Universit?t Frankfurt, Germany
11.07.2023Reconstruction of opportunities to understand the function concept from online explainer videos13th Congress of the European Society for Research in Mathematics Education (CERME13) an der E?tv?s Loránd University (ELTE) am Alfréd Rényi Institute of Mathematics in Budapest, Hungary
18.09.2023Lernen mit Erkl?rvideos: Der Einfluss von Verstehensangeboten auf das Verstehen mathematischer Funktionen19. Fachgruppentagung P?dagogische Psychologie (PAEPS) an der Christian-Albrechts-Universit?t zu Kiel (CAU) am Leibniz-Institut für die P?dagogik der Naturwissenschaften und Mathematik (IPN) in Kiel, Germany

Daniela Schansker

Von den natürlichen Zahlen zu den Dezimalbrüchen im dezimalen Stellenwertsystem: Ein Entwicklungsforschungsprojekt zur strukturfokussierenden Einführung der Dezimalbrüche mit der digitalen Stellenwerttafel

Dieses Bild zeigt das Entbündeln eines Pl?ttchens aus der Einerspalte der Stellenwerttafel in zehn Pl?ttchen in der Zehntelspalte der Stellenwerttafel.
Entbündeln durch Verschieben in der digitalen Stellenwerttafel auf dem iPad (App: "Stellenwerttafel")

In her doctoral project, Daniela Schansker is investigating how a digital place value table on the iPad can be used to expand the decimal place value system from natural numbers to decimal fractions.

The project is supervised by Prof. Dr. Angelika Bikner-Ahsbahs.

Reviewed conference and journal papers are marked with an asterisk (*). Until 2017 I published under my birth name Behrens.

*  Callies, M., Hanke, E., Klee, A., Knipping, C., Quentel, N., Schansker, D., & Schr?der, H. (2023). Vier Seiten einer Medaille. Welche Rolle spielt das Fach bei der Verzahnung und Vernetzung von Fachdidaktik und Fachwissenschaft? heiEDUCATION Journal 9 (pp. 129–154).

    Bikner-Ahsbahs, A., Burgarth, S., & Schansker, D. (2018). Komplement?res Scaffolding: digital und haptisch. In Fachgruppe Didaktik der Mathematik der Universit?t Paderborn (Ed.), Beitr?ge zum Mathematikunterricht 2018 (pp. 285–288). Mu?nster: WTM-Verlag.

    Behrens, D., & Bikner-Ahsbahs, A. (2017). Indexikalit?t von Zeichen als Erkl?rungsansatz für epistemische Prozesse mit der digitalen Stellenwerttafel. In U. Kortenkamp & A. Kuzle (Ed.), Beitr?ge zum Mathematikunterricht 2017 (pp. 67–70). Mu?nster: WTM-Verlag.

*  Behrens, D., & Bikner-Ahsbahs, A. (2017). The perspective of indexicality: How tool-based actions and gestures contribute to concept-building. In T. Dooley & G. Gueudet (Ed.). Proceedings of the 10th Congress of the European Society for Research in Mathematics Education (CERME10, 2017, pp. 2721–2728). Dublin, Irland: DCU Institute of Education and ERME.

    Behrens, D., & Bikner-Ahsbahs, A. (2016). Die digitale Stellenwerttafel: Aufgabendesign zur Einführung der Dezimalbrüche. In Institut für Mathematik und Informatik der P?dagogischen Hochschule Heidelberg (Ed.), Beitr?ge zum Mathematikunterricht 2016 (pp. 117–120). Mu?nster: WTM-Verlag.

*  Behrens, D. & Bikner-Ahsbahs, A. (2016). The dragging gesture – from acting to conceptualizing. In C. Scíkos, A. Rausch & J. Szitányi (Ed.), Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 67–74). Szeged, Ungarn: PME.

*  Behrens, D. (2015). How a digital place value chart could foster substantial understanding of the decimal place value system. In K. Krainer & N. Vondrová (Ed.), Proceedings of the 9th Congress of the European Society for Research in Mathematics Education (pp. 2467-2472). Prag, Tschechische Republik: ERME.

     Behrens, D., Krause, C.M., Bikner-Ahsbahs, A. (2014). ?Ich zeig‘ uns was, was du nicht siehst“ – Zur epistemischen Rolle von Gesten. In J. Roth & J. Ames (Ed.), Beitr?ge zum Mathematikunterricht 2014 (pp. 149–152). Münster: WTM-Verlag.

Aylin Thomaneck

Students’ approaches when interpreting contextual graphs

In her PhD project, Aylin Thomaneck uses eye tracking to investigate how students interpret contextual graphs, i.e. graphs whose data originate from real-world contexts. First, she conducted a methodological case study to investigate how eye movements can be interpreted in contextual graph interpretation, to what extent they correspond to students’ cognitive processes while working on the tasks, and what contribution eye tracking can make in this subdomain. She is now using these findings for empirical studies on students' approaches in interpretation processes with different task requirements. In particular, she focuses on students’ approaches when capturing the change of contextual graphs and when matching a realistic image to a contextual graph–a task in which the graph-as-a-picture error frequently occurs.

The project is supervised by Prof. Dr. Maike Vollstedt.

Reviewed conference and journal papers are marked with an asterisk (*).

* Thomaneck, A., Vollstedt, M., & Schindler, M. (accepted). Matching a graph with an image representing the situational context: Students‘ approaches identified by using eye tracking. Thirteenth Congress of the European Society for Research in Mathematics Education (CERME13). Budapest, Hungary.

Thomaneck, A., Vollstedt, M., & Schindler, M. (2023). Eye-Tracking und Stimulated Recall Interviews zur Strategieanalyse bei der Erfassung der ?nderung von Graphen.Beitr?ge zum Mathematikunterricht 2023, 1273-1276. Frankfurt a. M., Germany: Jahrestagung GDM. doi: 10.17877/DE290R-23277

* Thomaneck, A., Vollstedt, M., & Schindler, M. (2022). What can eye movements tell about students’ interpretations of contextual graphs? A methodological study on the use of the eye-mind hypothesis in the domain of functions.Frontiers in Education, 7. doi: 10.3389/feduc.2022.1003740

* Thomaneck, A., Vollstedt, M., & Schindler, M. (2021). Students‘ perception of change in graphs: an eye-tracking study.Proceedings of the Twelfth Congress of the European Society for Research in Mathematics Education (CERME12), 1-11. Bozen-Bolzano, Italy: CERME 12.

* Thomaneck, A., Vollstedt, M., & Schindler, M. (2021). Students‘ perception of change in graphs: an eye-tracking study.Proceedings of the 44th Conference of the International Group for the Psychology of Mathematics Education, Vol. 1, 184. Khon Kaen, Thailand: PME.

Thomaneck, A., Schindler, M., & Vollstedt, M. (2020). Kognitive Prozesse bei der Erfassung funktionaler Zusammenh?nge: eine Eye-Tracking Studie.Beitr?ge zum Mathematikunterricht 2020, 1487. Würzburg, Germany: Jahrestagung GDM. doi: 10.17877/DE290R-21590

Completed doctoral projects

Dr. Nele Abels (2021)

Title of the dissertation: Argumentation und Metakognition bei geometrischen Beweisen und Beweisprozessen. Eine Untersuchung von Studierenden des Grundschullehramts

Supervised by Prof. Dr. Christine Knipping

Dr. Thomas Bardy (2015)

Title of the dissertation: Zur Herstellung von Geltung mathematischen Wissens im Mathematikunterricht

Supervised by Prof. Dr. Angelika Bikner-Ahsbahs

Dr. Jenny Cramer (2017)

Title of the dissertation: Mathematisches Argumentieren als Diskurs. Eine theoretische und empirische Betrachtung diskursiver Hindernisse

Supervised by Prof. Dr. Christine Knipping.

Dr. Thomas Jan?en (2016)

Title of the dissertation: Ausbildung algebraischen Struktursinns im Klassenunterricht : Lernbezogene Neudeutung eines mathematikdidaktischen Begriffs

Supervised by Prof. Dr. Angelika Bikner-Ahsbahs.

Dr. Christina Krause (2015)

Title of the dissertation: The Mathematics in Our Hands. How Gestures Contribute to Constructing Mathematical Knowledge

Supervised by Prof. Dr. Angelika Bikner-Ahsbahs.

Dr. Chrysi Papadaki (2021)

Title of the dissertation: The interconnective relationship of students’ visualization and argumentation in geometry

Supervised by Prof. Dr. Christine Knipping & Prof. Dr. David A. Reid.

Dr. Neruja Suriakumaran (2022)

Title of the dissertation: Understanding the conceptual interplay between learners’ motivation and patterns of personal meaning in the mathematics classroom: results from Germany and Finland

Supervised by Prof. Dr. Maike Vollstedt & Prof. Dr. Markku Hannula.