Deep learning and inverse problems

The DLIP team focuses on the combination of Deep Learning methods with classical approaches for solving inverse problems. Special emphasis is put on the data-free method Deep Image Prior, the integration of physical model knowledge into the structure of artificial neural networks, and regularization. Core applications are computed tomography (CT) and magnetic particle imaging (MPI).

Computer Tomography

The DLIP team focuses on the combination of Deep Learning methods with classical approaches for solving inverse problems. Special emphasis is put on the data-free method Deep Image Prior, the integration of physical model knowledge into the structure of artificial neural networks, and regularization. Core applications are computed tomography (CT) and magnetic particle imaging (MPI).

Computer Tomography

Leader

Leader

Software & Datasets

Dival

The Deep Inversion Validation Library, Dival for short, is a Python program library for the convenient use and comparison of deep learning methods for inverse problems. The current focus of the software is in the area of computational tomography. Dival is available through the popular package manager PyPI. The program code is additionally available on Github.

LoDoPaB-CT

The Low-Dose Parallel Beam (LoDoPaB) CT dataset is a comprehensive collection of measurements and reference reconstructions for training and benchmarking deep learning reconstruction techniques for reduced radiation scan scenarios. It contains over 40000 scan slices from more than 800 different patients. The dataset is publicly available on Zenodo. Ease of use is ensured by the Dival library. In addition, the performance of trained models can be compared with other methods using an Online-Challenge.

Events

Events

Code Sprint 2020

Summer School 2020

Code Sprint, June 15-24

Code Sprint 2020

Summer School 2020

Code Sprint, June 15-24

Autumn School

Autumn School 2019

Deep Learning and Inverse Problems, November 04-08

Autumn School

Autumn School 2019

Deep Learning and Inverse Problems, November 04-08

Team

Bild Clemens Arndt

Clemens Arndt

Deep Learning and Inverse Problems

Bild David Erzmann

David Erzmann

Deep Learning and Inverse Problems

Bild Sonal Rami

Sonal Rami

Deep Learning and Inverse Problems

Helge Mohn

Helge Mohn

Deep Learning and Inverse Problems

Bild Rudolf Herdt

Rudolf Herdt

Deep Learning and Inverse Problems

Collaborating scientist

Foto Matthias Beckmann

Dr. Matthias Beckmann

Deep Learning and Inverse Problems

Projects

Logo DELETO

DELETO - Machine learning in correlative MR and high-throughput NanoCT.

BMBF-Projekt
Duratio: 01.04.2020 - 31.03.2023
PI: Tobias Kluth

In DELETO, Deep Learning methods for solving inverse problems will be decisively developed to make more accurate and efficient the reconstruction methods based on Structural Priors and Motion Correction in the field of correlative MR and high-throughput NanoCT, which are computationally expensive due to the large amount of data. The goal is to integrate these methods into next-generation devices.

Publications

D. Otero BaguerJ. LeuschnerM. Schmidt.
Computed Tomography Reconstruction Using Deep Image Prior and Learned Reconstruction Methods.
Inverse Problems, 36(9), IOPscience, 2020.

DOI: https://doi.org/10.1088/1361-6420/aba415


S. DittmerT. KluthP. Maa?D. Otero Baguer.
Regularization by architecture: A deep prior approach for inverse problems.
Journal of Mathematical Imaging and Vision, :456-470, Springer Verlag, 2020.

DOI: 10.1007/s10851-019-00923-x
online unter: http://link.springer.com/article/10.1007/s10851-019-00923-x

S. . Mukherjee, S. Dittmer, Z. . Shumaylov, S. Lunz, O. ?ktem, C. Sch?nlieb.
Learned convex regularizers for inverse problems.
Zur Ver?ffentlichung eingereicht.

online unter: https://arxiv.org/abs/2008.02839


S. DittmerT. Kluth, M. Henriksen, P. Maa?.
Deep image prior for 3D magnetic particle imaging: A quantitative comparison of regularization techniques on Open MPI dataset.
Zur Ver?ffentlichung eingereicht.

online unter: https://arxiv.org/abs/2007.01593


S. Dittmer, C. Sch?nlieb, P. Maa?.
Ground Truth Free Denoising by Optimal Transport.
Zur Ver?ffentlichung eingereicht.

online unter: https://arxiv.org/abs/2007.01575


S. DittmerP. Maa?.
A Projectional Ansatz to Reconstruction.
Zur Ver?ffentlichung eingereicht.

online unter: https://arxiv.org/abs/1907.04675


J. LeuschnerM. SchmidtD. Otero BaguerP. Maa?.
The LoDoPaB-CT Dataset: A Benchmark Dataset for Low-Dose CT Reconstruction Methods.
Zur Ver?ffentlichung eingereicht.

online unter: arXiv:1910.01113

S. DittmerT. KluthD. Otero Baguer, B. Maass.
A Deep Prior Approach to Magnetic Particle Imaging.
Machine Learning for Medical Image Reconstruction 2020.
Springer International Publishing, F. DeebaP. JohnsonT. WürflJ. C. Ye (Hrsg.), S. 113-122, 2020.


A. DenkerM. SchmidtJ. LeuschnerP. Maa?J. Behrmann.
Conditional Normalizing Flows for Low-Dose Computed Tomography Image Reconstruction.
ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 18.07-18.07.2020, Wien, ?sterreich.

online unter: https://invertibleworkshop.github.io/accepted_papers/index.html