Deep Learning und Inverse Probleme

The DLIP team focuses on the combination of Deep Learning methods with classical approaches for solving inverse problems. Special emphasis is put on the data-free method Deep Image Prior, the integration of physical model knowledge into the structure of artificial neural networks, and regularization. Core applications are computed tomography (CT) and magnetic particle imaging (MPI).

Computer Tomography

Das DLIP-Team forscht an der Verknüpfung von Deep Learning Verfahren mit klassischen Ans?tzen aus dem Bereich der inversen Probleme. Besondere Schwerpunkte liegen auf dem datenfreien Verfahren Deep Image Prior, der Integration von physikalischem Modellwissen in die Struktur von künstlichen neuronalen Netzen und der Regularisierung. Kernanwendungen sind die Computertomographie (CT) und das Magnetic Particle Imaging (MPI).

Computer Tomography

Leader

Leitung

Software & Datens?tze

Dival

Die Deep Inversion Validation Library, kurz Dival, ist eine Python-Programmbibliothek für den komfortablen Einsatz und Vergleich von Deep Learning Verfahren für inverse Probleme. Der aktuelle Schwerpunkt der Software liegt im Bereich der Computertomographie. Dival ist über den popul?ren Paketmanager PyPI verfügbar. Der Programmcode steht zus?tzlich auf Github bereit.

LoDoPaB-CT

Der Low-Dose Parallel Beam (LoDoPaB)-CT Datensatz ist eine umfangreiche Sammlung von Messungen und Referenzrekonstruktionen für das Training und den Benchmark von Deep Learning Rekonstruktionsverfahren für strahlungsreduzierte Scanszenarien. Er beinhaltet über 40000 Scanschnitte von 澳门皇冠_皇冠足球比分-劲爆体育 als 800 verschiedenen Patienten. Der Datensatz ist ?ffentlich auf Zenodo verfügbar. Eine einfache Verwendung ist durch die Dival-Bibliothek gew?hrleistet. Zus?tzlich l?sst sich die Performance trainierter Modelle anhand einer Online-Challenge mit anderen Verfahren vergleichen.

澳门皇冠_皇冠足球比分-劲爆体育

Events

Code Sprint 2020

Summer School 2020

Code Sprint, June 15-24

Code Sprint 2020

Summer School 2020

Code Sprint, June 15-24

Autumn School

Autumn School 2019

Deep Learning and Inverse Problems, November 04-08

Autumn School

Autumn School 2019

Deep Learning and Inverse Problems, November 04-08

Team

Bild Clemens Arndt

Clemens Arndt

Deep Learning und Inverse Probleme

Dr. David Erzmann

Deep Learning und Inverse Probleme

Bild Sonal Rami

Sonal Rami

Deep Learning und Inverse Probleme

Helge Mohn

Helge Mohn

Deep Learning und Inverse Probleme

Bild Rudolf Herdt

Rudolf Herdt

Deep Learning und Digitale Pathologie
 

Kooperierender Wissenschaftler

Foto Matthias Beckmann

Dr. Matthias Beckmann

Deep Learning und Inverse Probleme

Projekte

Logo DELETO

DELETO - Maschinelles Lernen bei korrelativer MR und Hochdurchsatz-NanoCT

BMBF-Projekt
Laufzeit: 01.04.2020 - 31.03.2023
Leitung: Tobias Kluth

In DELETO soll die mathematische Forschung von Deep Learning bei der L?sung inverser Probleme entscheidend vorangetrieben werden, um die aufgrund der gro?en Datenmengen rechenaufw?ndigen Rekonstruktionsmethoden, basierend auf Structural Priors und Motion Correction im Bereich der korrelativen MR und der Hochdurchsatz-NanoCT, exakter und effizienter zu gestalten. Ziel ist es diese Methoden in den Ger?ten der n?chsten Generation zu integrieren.

Ver?ffentlichungen

J. Antorán, R. Barbano, J. Leuschner, J. M. Hernández-Lobato, B. Jin.
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior.
Transactions on Machine Learning Research, 12, 2023.
online unter: https://openreview.net/forum?id=FWyabz82fH


D. Erzmann, S. Dittmer, H. Harms, P. Maa?.
DL4TO: A Deep Learning Library for Sample-Efficient Topology Optimization.
Lecture Notes in Computer Science, Geometric Science of Information. GSI 2023 14071, Springer Verlag, 2023.
DOI: 10.1007/978-3-031-38271-0_54


C. Arndt, A. Denker, S. Dittmer, N. Heilenk?tter, M. Iske, T. Kluth, P. Maa?, J. Nickel.
Invertible residual networks in the context of regularization theory for linear inverse problems.
Inverse Problems, 39(12), IOPscience, 2023.
DOI: 10.1088/1361-6420/ad0660
online unter: https://iopscience.iop.org/article/10.1088/1361-6420/ad0660


S. Dittmer, T. Kluth, M. Henriksen, P. Maa?.
Deep image prior for 3D magnetic particle imaging: A quantitative comparison of regularization techniques on Open MPI dataset.
International Journal on Magnetic Particle Imaging, 7(1), 2021.
online unter:
https://journal.iwmpi.org/index.php/iwmpi/article/view/148


J. Leuschner, M. Schmidt, D. Otero Baguer, P. Maa?.
LoDoPaB-CT, a benchmark dataset for low-dose computed tomography reconstruction.
Scientific Data, 8(109), 2021.
DOI: 10.1038/s41597-021-00893-z


D. Otero Baguer, J. Leuschner, M. Schmidt.
Computed Tomography Reconstruction Using Deep Image Prior and Learned Reconstruction Methods.
Inverse Problems, 36(9), IOPscience, 2020. DOI: https://doi.org/10.1088/1361-6420/aba415


S. Dittmer, T. Kluth, P. Maa?, D. Otero Baguer.
Regularization by architecture: A deep prior approach for inverse problems.
Journal of Mathematical Imaging and Vision, :456-470, Springer Verlag, 2020. DOI: 10.1007/s10851-019-00923-x, online unter: http://link.springer.com/article/10.1007/s10851-019-00923-x

S. . Mukherjee, S. Dittmer, Z. . Shumaylov, S. Lunz, O. ?ktem, C. Sch?nlieb.
Learned convex regularizers for inverse problems.
Zur Ver?ffentlichung eingereicht, online unter: https://arxiv.org/abs/2008.02839


S. Dittmer, C. Sch?nlieb, P. Maa?.
Ground Truth Free Denoising by Optimal Transport.
Zur Ver?ffentlichung eingereicht, online unter: https://arxiv.org/abs/2007.01575


S. Dittmer, P. Maa?.
A Projectional Ansatz to Reconstruction.
Zur Ver?ffentlichung eingereicht, online unter: https://arxiv.org/abs/1907.04675


 

S. Dittmer, T. Kluth, D. Otero Baguer, B. Maass.
A Deep Prior Approach to Magnetic Particle Imaging.
Machine Learning for Medical Image Reconstruction 2020. Springer International Publishing, F. Deeba, P. Johnson, T. Würfl, J. C. Ye (Hrsg.), S. 113-122, 2020.


A. Denker, M. Schmidt, J. Leuschner, P. Maa?, J. Behrmann.
Conditional Normalizing Flows for Low-Dose Computed Tomography Image Reconstruction.
ICML Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models, 18.07-18.07.2020, Wien, ?sterreich, online unter: https://invertibleworkshop.github.io/accepted_papers/index.html